Asymmetric unit of cryoEM structure of bacteriophage lambda capsid at 3.76 AngstromAsymmetric unit of cryoEM structure of bacteriophage lambda capsid at 3.76 Angstrom

Structural highlights

7vik is a 14 chain structure with sequence from Escherichia virus Lambda. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.76Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DECO_LAMBD Stabilizes the expansion of the capsid head shell after genome packaging. The packaging of viral genome in the procapsid triggers a dramatic reconfiguration of the capsid shell, expanding from roughly 50nm to 60nm while the capsid thickness decreases. 415 capsid decoration protein molecules cooperatively bind the expanded capsid, thereby stabilizing the mature capsid shell.[1] [2] [3]

Publication Abstract from PubMed

Bacteriophage lambda is an excellent model system for studying capsid assembly of double-stranded DNA (dsDNA) bacteriophages, some dsDNA archaeal viruses, and herpesviruses. HK97 fold coat proteins initially assemble into a precursor capsid (procapsid) and subsequent genome packaging triggers morphological expansion of the shell. An auxiliary protein is required to stabilize the expanded capsid structure. To investigate the capsid maturation mechanism, we determined the cryo-electron microscopy structures of the bacteriophage lambda procapsid and mature capsid at 3.88 A and 3.76 A resolution, respectively. Besides primarily rigid body movements of common features of the major capsid protein gpE, large-scale structural rearrangements of other domains occur simultaneously. Assembly of intercapsomers within the procapsid is facilitated by layer-stacking effects at 3-fold vertices. Upon conformational expansion of the capsid shell, the missing top layer is fulfilled by cementing the gpD protein against the internal pressure of DNA packaging. Our structures illuminate the assembly mechanisms of dsDNA viruses.

Structural basis of bacteriophage lambda capsid maturation.,Wang C, Zeng J, Wang J Structure. 2022 Jan 4. pii: S0969-2126(21)00461-5. doi:, 10.1016/j.str.2021.12.009. PMID:35026161[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE. Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. Structure. 2008 Sep 10;16(9):1399-406. doi: 10.1016/j.str.2008.05.016. PMID:18786402 doi:http://dx.doi.org/10.1016/j.str.2008.05.016
  2. Medina EM, Andrews BT, Nakatani E, Catalano CE. The bacteriophage lambda gpNu3 scaffolding protein is an intrinsically disordered and biologically functional procapsid assembly catalyst. J Mol Biol. 2011 Sep 30;412(4):723-36. doi: 10.1016/j.jmb.2011.07.045. Epub 2011 , Jul 29. PMID:21821043 doi:http://dx.doi.org/10.1016/j.jmb.2011.07.045
  3. Dokland T, Murialdo H. Structural transitions during maturation of bacteriophage lambda capsids. J Mol Biol. 1993 Oct 20;233(4):682-94. PMID:8411174 doi:http://dx.doi.org/10.1006/jmbi.1993.1545
  4. Wang C, Zeng J, Wang J. Structural basis of bacteriophage lambda capsid maturation. Structure. 2022 Jan 4. pii: S0969-2126(21)00461-5. doi:, 10.1016/j.str.2021.12.009. PMID:35026161 doi:http://dx.doi.org/10.1016/j.str.2021.12.009

7vik, resolution 3.76Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA