E. coli BAM complex (BamABCDE) bound to dynobactin AE. coli BAM complex (BamABCDE) bound to dynobactin A

Structural highlights

7r1w is a 6 chain structure with sequence from Escherichia coli K-12 and Photorhabdus australis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.6Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BAMB_ECOLI Part of the outer membrane protein assembly complex, which is involved in assembly and insertion of beta-barrel proteins into the outer membrane. Nonessential member of the complex, which may orient the flexible periplasmic domain of BamA for interaction with other Bam components, chaperones and nascent outer membrane proteins.[1] [2] [3] [4]

Publication Abstract from PubMed

Discovery of antibiotics acting against Gram-negative species is uniquely challenging due to their restrictive penetration barrier. BamA, which inserts proteins into the outer membrane, is an attractive target due to its surface location. Darobactins produced by Photorhabdus, a nematode gut microbiome symbiont, target BamA. We reasoned that a computational search for genes only distantly related to the darobactin operon may lead to novel compounds. Following this clue, we identified dynobactin A, a novel peptide antibiotic from Photorhabdus australis containing two unlinked rings. Dynobactin is structurally unrelated to darobactins, but also targets BamA. Based on a BamA-dynobactin co-crystal structure and a BAM-complex-dynobactin cryo-EM structure, we show that dynobactin binds to the BamA lateral gate, uniquely protruding into its beta-barrel lumen. Dynobactin showed efficacy in a mouse systemic Escherichia coli infection. This study demonstrates the utility of computational approaches to antibiotic discovery and suggests that dynobactin is a promising lead for drug development.

Computational identification of a systemic antibiotic for gram-negative bacteria.,Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, Liang L, Son S, Nicolau S, Bargabos R, Morrissette M, Gates MF, Pitt N, Jakob RP, Rath P, Maier T, Malyutin AG, Kaiser JT, Niles S, Karavas B, Ghiglieri M, Bowman SEJ, Rees DC, Hiller S, Lewis K Nat Microbiol. 2022 Oct;7(10):1661-1672. doi: 10.1038/s41564-022-01227-4. Epub , 2022 Sep 26. PMID:36163500[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hagan CL, Kim S, Kahne D. Reconstitution of outer membrane protein assembly from purified components. Science. 2010 May 14;328(5980):890-2. doi: 10.1126/science.1188919. Epub 2010 Apr, 8. PMID:20378773 doi:10.1126/science.1188919
  2. Hagan CL, Kahne D. The reconstituted Escherichia coli Bam complex catalyzes multiple rounds of beta-barrel assembly. Biochemistry. 2011 Sep 6;50(35):7444-6. doi: 10.1021/bi2010784. Epub 2011 Aug 11. PMID:21823654 doi:10.1021/bi2010784
  3. Albrecht R, Zeth K. Structural basis of outer membrane protein biogenesis in bacteria. J Biol Chem. 2011 Aug 5;286(31):27792-803. Epub 2011 May 17. PMID:21586578 doi:10.1074/jbc.M111.238931
  4. Noinaj N, Fairman JW, Buchanan SK. The Crystal Structure of BamB Suggests Interactions with BamA and Its Role within the BAM Complex. J Mol Biol. 2011 Jan 26. PMID:21277859 doi:10.1016/j.jmb.2011.01.042
  5. Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, Liang L, Son S, Nicolau S, Bargabos R, Morrissette M, Gates MF, Pitt N, Jakob RP, Rath P, Maier T, Malyutin AG, Kaiser JT, Niles S, Karavas B, Ghiglieri M, Bowman SEJ, Rees DC, Hiller S, Lewis K. Computational identification of a systemic antibiotic for gram-negative bacteria. Nat Microbiol. 2022 Oct;7(10):1661-1672. doi: 10.1038/s41564-022-01227-4. Epub, 2022 Sep 26. PMID:36163500 doi:http://dx.doi.org/10.1038/s41564-022-01227-4

7r1w, resolution 3.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA