7q5f
Crystal structure of F2F-2020216-01X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2.Crystal structure of F2F-2020216-01X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2.
Structural highlights
FunctionR1AB_SARS2 Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein.[UniProtKB:P0C6X7] Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response.[UniProtKB:P0C6X7] May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.[UniProtKB:P0C6X7] Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Participates together with nsp4 in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3. Prevents also host NF-kappa-B signaling.[UniProtKB:P0C6X7] Participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication.[UniProtKB:P0C6X7] Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN] (PubMed:32198291). Also able to bind an ADP-ribose-1-phosphate (ADRP).[UniProtKB:P0C6X7][1] Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] May participate in viral replication by acting as a ssRNA-binding protein.[UniProtKB:P0C6X7] Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.[UniProtKB:P0C6X7] Responsible for replication and transcription of the viral RNA genome.[UniProtKB:P0C6X7] Multi-functional protein with a zinc-binding domain in N-terminus displaying RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Activity of helicase is dependent on magnesium.[UniProtKB:P0C6X7] Enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity. Acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens.[UniProtKB:P0C6X7] Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond.[UniProtKB:P0C6X7] Methyltransferase that mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system.[UniProtKB:P0C6X7] Publication Abstract from PubMedSARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (M(pro)) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel alpha-ketoamides as covalent reversible inhibitors of M(pro), exploiting the PADAM oxidation route. The reported compounds showed muM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 M(pro). In order to assess inhibitors' binding mode, two co-crystal structures of SARS-CoV-2 M(pro) in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of M(pro). Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS M(pro) where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors. Easy access to alpha-ketoamides as SARS-CoV-2 and MERS M(pro) inhibitors via the PADAM oxidation route.,Pelliccia S, Cerchia C, Esposito F, Cannalire R, Corona A, Costanzi E, Kuzikov M, Gribbon P, Zaliani A, Brindisi M, Storici P, Tramontano E, Summa V Eur J Med Chem. 2022 Dec 15;244:114853. doi: 10.1016/j.ejmech.2022.114853. Epub , 2022 Oct 17. PMID:36332546[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|