MerTK kinase domain with type 1.5 inhibitor containing a di-methyl, cyano pyrazole groupMerTK kinase domain with type 1.5 inhibitor containing a di-methyl, cyano pyrazole group

Structural highlights

7olv is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.13Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MERTK_HUMAN Defects in MERTK are the cause of retinitis pigmentosa type 38 (RP38) [MIM:613862. RP38 is a retinal dystrophy belonging to the group of pigmentary retinopathies. Retinitis pigmentosa is characterized by retinal pigment deposits visible on fundus examination and primary loss of rod photoreceptor cells followed by secondary loss of cone photoreceptors. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well.[1]

Function

MERTK_HUMAN Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to several ligands including LGALS3, TUB, TULP1 or GAS6. Regulates many physiological processes including cell survival, migration, differentiation, and phagocytosis of apoptotic cells (efferocytosis). Ligand binding at the cell surface induces autophosphorylation of MERTK on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with GRB2 or PLCG2 and induces phosphorylation of MAPK1, MAPK2, FAK/PTK2 or RAC1. MERTK signaling plays a role in various processes such as macrophage clearance of apoptotic cells, platelet aggregation, cytoskeleton reorganization and engulfment. Functions in the retinal pigment epithelium (RPE) as a regulator of rod outer segments fragments phagocytosis. Plays also an important role in inhibition of Toll-like receptors (TLRs)-mediated innate immune response by activating STAT1, which selectively induces production of suppressors of cytokine signaling SOCS1 and SOCS3.[2]

Publication Abstract from PubMed

Inhibition of Mer and Axl kinases has been implicated as a potential way to improve the efficacy of current immuno-oncology therapeutics by restoring the innate immune response in the tumor microenvironment. Highly selective dual Mer/Axl kinase inhibitors are required to validate this hypothesis. Starting from hits from a DNA-encoded library screen, we optimized an imidazo[1,2-a]pyridine series using structure-based compound design to improve potency and reduce lipophilicity, resulting in a highly selective in vivo probe compound 32. We demonstrated dose-dependent in vivo efficacy and target engagement in Mer- and Axl-dependent efficacy models using two structurally differentiated and selective dual Mer/Axl inhibitors. Additionally, in vivo efficacy was observed in a preclinical MC38 immuno-oncology model in combination with anti-PD1 antibodies and ionizing radiation.

Optimization of an Imidazo[1,2-a]pyridine Series to Afford Highly Selective Type I1/2 Dual Mer/Axl Kinase Inhibitors with In Vivo Efficacy.,McCoull W, Boyd S, Brown MR, Coen M, Collingwood O, Davies NL, Doherty A, Fairley G, Goldberg K, Hardaker E, He G, Hennessy EJ, Hopcroft P, Hodgson G, Jackson A, Jiang X, Karmokar A, Laine AL, Lindsay N, Mao Y, Markandu R, McMurray L, McLean N, Mooney L, Musgrove H, Nissink JWM, Pflug A, Reddy VP, Rawlins PB, Rivers E, Schimpl M, Smith GF, Tentarelli S, Travers J, Troup RI, Walton J, Wang C, Wilkinson S, Williamson B, Winter-Holt J, Yang D, Zheng Y, Zhu Q, Smith PD J Med Chem. 2021 Sep 23;64(18):13524-13539. doi: 10.1021/acs.jmedchem.1c00920., Epub 2021 Sep 3. PMID:34478292[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, Apfelstedt-Sylla E, Vollrath D. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet. 2000 Nov;26(3):270-1. PMID:11062461 doi:10.1038/81555
  2. Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, Irimura T, Jones S, Feldmann H, Kawaoka Y. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol. 2006 Oct;80(20):10109-16. PMID:17005688 doi:80/20/10109
  3. McCoull W, Boyd S, Brown MR, Coen M, Collingwood O, Davies NL, Doherty A, Fairley G, Goldberg K, Hardaker E, He G, Hennessy EJ, Hopcroft P, Hodgson G, Jackson A, Jiang X, Karmokar A, Laine AL, Lindsay N, Mao Y, Markandu R, McMurray L, McLean N, Mooney L, Musgrove H, Nissink JWM, Pflug A, Reddy VP, Rawlins PB, Rivers E, Schimpl M, Smith GF, Tentarelli S, Travers J, Troup RI, Walton J, Wang C, Wilkinson S, Williamson B, Winter-Holt J, Yang D, Zheng Y, Zhu Q, Smith PD. Optimization of an Imidazo[1,2-a]pyridine Series to Afford Highly Selective Type I1/2 Dual Mer/Axl Kinase Inhibitors with In Vivo Efficacy. J Med Chem. 2021 Sep 23;64(18):13524-13539. doi: 10.1021/acs.jmedchem.1c00920., Epub 2021 Sep 3. PMID:34478292 doi:http://dx.doi.org/10.1021/acs.jmedchem.1c00920

7olv, resolution 2.13Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA