7-FE FERREDOXIN FROM AZOTOBACTER VINELANDII AT PH 8.5, 100 K, 1.35 A7-FE FERREDOXIN FROM AZOTOBACTER VINELANDII AT PH 8.5, 100 K, 1.35 A

Structural highlights

7fd1 is a 1 chain structure with sequence from Azotobacter vinelandii. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FER1_AZOVI Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. This ferredoxin could play a role in regulating gene expression by interacting directly with DNA.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The refined structure of reduced Azotobacter vinelandii 7Fe ferredoxin FdI at 100 K and 1.4 A resolution is reported, permitting comparison of [3Fe-4S]+ and [3Fe-4S]0 clusters in the same protein at near atomic resolution. The reduced state of the [3Fe-4S]0 cluster is established by single-crystal EPR following data collection. Redundant structures are refined to establish the reproducibility and accuracy of the results for both oxidation states. The structure of the [4Fe-4S]2+ cluster in four independently determined FdI structures is the same within the range of derived standard uncertainties, providing an internal control on the experimental methods and the refinement results. The structures of the [3Fe-4S]+ and [3Fe-4S]0 clusters are also the same within experimental error, indicating that the protein may be enforcing an entatic state upon this cluster, facilitating electron-transfer reactions. The structure of the FdI [3Fe-4S]0 cluster allows direct comparison with the structure of a well-characterized [Fe3S4]0 synthetic analogue compound. The [3Fe-4S]0 cluster displays significant distortions with respect to the [Fe3S4]0 analogue, further suggesting that the observed [3Fe-4S]+/0 geometry in FdI may represent an entatic state. Comparison of oxidized and reduced FdI reveals conformational changes at the protein surface in response to reduction of the [3Fe-4S]+/0 cluster. The carboxyl group of Asp15 rotates approximately 90 degrees, Lys84, a residue hydrogen bonded to Asp15, adopts a single conformation, and additional H2O molecules become ordered. These structural changes imply a mechanism for H+ transfer to the [3Fe-4S]0 cluster in agreement with electrochemical and spectroscopic results.

Oxidized and reduced Azotobacter vinelandii ferredoxin I at 1.4 A resolution: conformational change of surface residues without significant change in the [3Fe-4S]+/0 cluster.,Schipke CG, Goodin DB, McRee DE, Stout CD Biochemistry. 1999 Jun 29;38(26):8228-39. PMID:10387068[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schipke CG, Goodin DB, McRee DE, Stout CD. Oxidized and reduced Azotobacter vinelandii ferredoxin I at 1.4 A resolution: conformational change of surface residues without significant change in the [3Fe-4S]+/0 cluster. Biochemistry. 1999 Jun 29;38(26):8228-39. PMID:10387068 doi:10.1021/bi983008i

7fd1, resolution 1.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA