Crystal Structure of Cyanobacterial Circadian Clock Protein KaiCCrystal Structure of Cyanobacterial Circadian Clock Protein KaiC

Structural highlights

7dy1 is a 6 chain structure with sequence from Thermosynechococcus vestitus BP-1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KAIC_THEVB Core component of the KaiABC clock protein complex, which constitutes the main circadian regulator in cyanobacteria. Binds to DNA. The KaiABC complex may act as a promoter-nonspecific transcription regulator that represses transcription, possibly by acting on the state of chromosome compaction (By similarity).

Publication Abstract from PubMed

SignificanceKaiC, a core clock protein in the cyanobacterial circadian clock system, hydrolyzes adenosine triphosphate (ATP) at two distinct sites in a slow but ordered manner to measure the circadian timescale. We used biochemical and structural biology techniques to characterize the properties and interplay of dual-adenosine triphosphatase (ATPase) active sites. Our results show that the N-terminal and C-terminal ATPases communicate with each other through an interface between the N-terminal and C-terminal domains in KaiC. The dual-ATPase sites are regulated rhythmically in a concerted or opposing manner dependent on the phase of the circadian clock system, controlling the affinities of KaiC for other clock proteins, KaiA and KaiB.

Regulation mechanisms of the dual ATPase in KaiC.,Furuike Y, Mukaiyama A, Koda SI, Simon D, Ouyang D, Ito-Miwa K, Saito S, Yamashita E, Nishiwaki-Ohkawa T, Terauchi K, Kondo T, Akiyama S Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2119627119. doi:, 10.1073/pnas.2119627119. Epub 2022 May 4. PMID:35507871[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Furuike Y, Mukaiyama A, Koda SI, Simon D, Ouyang D, Ito-Miwa K, Saito S, Yamashita E, Nishiwaki-Ohkawa T, Terauchi K, Kondo T, Akiyama S. Regulation mechanisms of the dual ATPase in KaiC. Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2119627119. PMID:35507871 doi:10.1073/pnas.2119627119

7dy1, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA