Human Galectin-3 CRD in complex with novel tetrahydropyran-based thiodisaccharide mimic inhibitorHuman Galectin-3 CRD in complex with novel tetrahydropyran-based thiodisaccharide mimic inhibitor

Structural highlights

7df5 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.08Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LEG3_HUMAN Galactose-specific lectin which binds IgE. May mediate with the alpha-3, beta-1 integrin the stimulation by CSPG4 of endothelial cells migration. Together with DMBT1, required for terminal differentiation of columnar epithelial cells during early embryogenesis (By similarity). In the nucleus: acts as a pre-mRNA splicing factor. Involved in acute inflammatory responses including neutrophil activation and adhesion, chemoattraction of monocytes macrophages, opsonization of apoptotic neutrophils, and activation of mast cells.[1] [2] [3]

Publication Abstract from PubMed

Galectin-3 is a member of a family of beta-galactoside-binding proteins. A substantial body of literature reports that galectin-3 plays important roles in cancer, inflammation, and fibrosis. Small-molecule galectin-3 inhibitors, which are generally lactose or galactose-based derivatives, have the potential to be valuable disease-modifying agents. In our efforts to identify novel galectin-3 disaccharide mimics to improve drug-like properties, we found that one of the monosaccharide subunits can be replaced with a suitably functionalized tetrahydropyran ring. Optimization of the structure-activity relationships around the tetrahydropyran-based scaffold led to the discovery of potent galectin-3 inhibitors. Compounds 36, 40, and 45 were selected for further in vivo evaluation. The synthesis, structure-activity relationships, and in vivo evaluation of novel tetrahydropyran-based galectin-3 inhibitors are described.

Synthesis, Structure-Activity Relationships, and In Vivo Evaluation of Novel Tetrahydropyran-Based Thiodisaccharide Mimics as Galectin-3 Inhibitors.,Xu L, Hartz RA, Beno BR, Ghosh K, Shukla JK, Kumar A, Patel D, Kalidindi N, Lemos N, Gautam SS, Kumar A, Ellsworth BA, Shah D, Sale H, Cheng D, Regueiro-Ren A J Med Chem. 2021 May 27;64(10):6634-6655. doi: 10.1021/acs.jmedchem.0c02001. Epub, 2021 May 14. PMID:33988358[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004 Aug;15(8):3580-90. Epub 2004 Jun 4. PMID:15181153 doi:http://dx.doi.org/10.1091/mbc.E04-03-0236
  2. Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev. 2009 Jul;230(1):160-71. doi: 10.1111/j.1600-065X.2009.00794.x. PMID:19594635 doi:10.1111/j.1600-065X.2009.00794.x
  3. Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL, Arnoys EJ. Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta. 2010 Feb;1800(2):181-189. Epub 2009 Jul 16. PMID:19616076 doi:S0304-4165(09)00194-9
  4. Xu L, Hartz RA, Beno BR, Ghosh K, Shukla JK, Kumar A, Patel D, Kalidindi N, Lemos N, Gautam SS, Kumar A, Ellsworth BA, Shah D, Sale H, Cheng D, Regueiro-Ren A. Synthesis, Structure-Activity Relationships, and In Vivo Evaluation of Novel Tetrahydropyran-Based Thiodisaccharide Mimics as Galectin-3 Inhibitors. J Med Chem. 2021 May 27;64(10):6634-6655. PMID:33988358 doi:10.1021/acs.jmedchem.0c02001

7df5, resolution 1.08Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA