CryoEM structure of GIRK2-PIP2/CHS - G protein-gated inwardly rectifying potassium channel GIRK2 with modulators cholesteryl hemisuccinate and PIP2CryoEM structure of GIRK2-PIP2/CHS - G protein-gated inwardly rectifying potassium channel GIRK2 with modulators cholesteryl hemisuccinate and PIP2

Structural highlights

6xev is a 4 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.5Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

KCNJ6_MOUSE Defects in Kcnj6 are the cause of the weaver (wv) phenotype. Homozygous animals suffer from severe ataxia that is obvious by about the second postnatal week. The cerebellum of these animals is drastically reduced in size due to depletion of the major cell type of cerebellum, the granule cell neuron. Heterozygous animals are not ataxic but have an intermediate number of surviving granule cells. Male homozygotes are sterile, because of complete failure of sperm production. Both hetero- and homozygous animals undergo sporadic tonic-clonic seizures.

Function

KCNJ6_MOUSE This potassium channel is controlled by G proteins. It plays a role in granule cell differentiation, possibly via membrane hyperpolarization. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium.

See Also

6xev, resolution 3.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA