Dengue serotype 3 RNA-dependent RNA polymerase bound to NITD-434Dengue serotype 3 RNA-dependent RNA polymerase bound to NITD-434

Structural highlights

6xd0 is a 1 chain structure with sequence from Dengue virus 3. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.012Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

POLG_DEN3S Capsid protein C: Plays a role in virus budding by binding to the cell membrane and gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. During virus entry, may induce genome penetration into the host cytoplasm after hemifusion induced by the surface proteins. Can migrate to the cell nucleus where it modulates host functions. Overcomes the anti-viral effects of host EXOC1 by sequestering and degrading the latter through the proteasome degradation pathway.[UniProtKB:P17763] Capsid protein C: Inhibits RNA silencing by interfering with host Dicer.[UniProtKB:P03314] Peptide pr: Prevents premature fusion activity of envelope proteins in trans-Golgi by binding to envelope protein E at pH6.0. After virion release in extracellular space, gets dissociated from E dimers.[UniProtKB:P17763] Protein prM: Acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is the only viral peptide matured by host furin in the trans-Golgi network probably to avoid catastrophic activation of the viral fusion activity in acidic Golgi compartment prior to virion release. prM-E cleavage is inefficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion.[UniProtKB:P17763] Small envelope protein M: May play a role in virus budding. Exerts cytotoxic effects by activating a mitochondrial apoptotic pathway through M ectodomain. May display a viroporin activity.[UniProtKB:P17763] Envelope protein E: Binds to host cell surface receptor and mediates fusion between viral and cellular membranes. Envelope protein is synthesized in the endoplasmic reticulum in the form of heterodimer with protein prM. They play a role in virion budding in the ER, and the newly formed immature particle is covered with 60 spikes composed of heterodimer between precursor prM and envelope protein E. The virion is transported to the Golgi apparatus where the low pH causes dissociation of PrM-E heterodimers and formation of E homodimers. prM-E cleavage is inefficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion.[UniProtKB:P17763] Non-structural protein 1: Involved in immune evasion, pathogenesis and viral replication. Once cleaved off the polyprotein, is targeted to three destinations: the viral replication cycle, the plasma membrane and the extracellular compartment. Essential for viral replication. Required for formation of the replication complex and recruitment of other non-structural proteins to the ER-derived membrane structures. Excreted as a hexameric lipoparticle that plays a role against host immune response. Antagonizing the complement function. Binds to the host macrophages and dendritic cells. Inhibits signal transduction originating from Toll-like receptor 3 (TLR3).[UniProtKB:Q9Q6P4] Non-structural protein 1: Disrupts the host endothelial glycocalyx layer of host pulmonary microvascular endothelial cells, inducing degradation of sialic acid and shedding of heparan sulfate proteoglycans. NS1 induces expression of sialidases, heparanase, and activates cathepsin L, which activates heparanase via enzymatic cleavage. These effects are probably linked to the endothelial hyperpermeability observed in severe dengue disease.[UniProtKB:P17763] Non-structural protein 2A: Component of the viral RNA replication complex that functions in virion assembly and antagonizes the host immune response.[UniProtKB:P17763] Serine protease subunit NS2B: Required cofactor for the serine protease function of NS3. May have membrane-destabilizing activity and form viroporins (By similarity).[UniProtKB:P17763][PROSITE-ProRule:PRU00859] Serine protease NS3: Displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS2B, performs its autocleavage and cleaves the polyprotein at dibasic sites in the cytoplasm: C-prM, NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-2K and NS4B-NS5. NS3 RNA helicase binds RNA and unwinds dsRNA in the 3' to 5' direction.[PROSITE-ProRule:PRU00860] Non-structural protein 4A: Regulates the ATPase activity of the NS3 helicase activity. NS4A allows NS3 helicase to conserve energy during unwinding. Plays a role in the inhibition of the host innate immune response. Interacts with host MAVS and thereby prevents the interaction between DDX58 and MAVS. In turn, IFN-beta production is impaired.[UniProtKB:P17763][UniProtKB:Q9Q6P4] Peptide 2k: Functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter.[UniProtKB:P17763] Non-structural protein 4B: Induces the formation of ER-derived membrane vesicles where the viral replication takes place. Inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway.[UniProtKB:Q9Q6P4] RNA-directed RNA polymerase NS5: Replicates the viral (+) and (-) RNA genome, and performs the capping of genomes in the cytoplasm. NS5 methylates viral RNA cap at guanine N-7 and ribose 2'-O positions. Besides its role in RNA genome replication, also prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signaling pathway. Inhibits host TYK2 and STAT2 phosphorylation, thereby preventing activation of JAK-STAT signaling pathway.[UniProtKB:P17763]

Publication Abstract from PubMed

Dengue virus (DENV) NS5 RNA-dependent RNA polymerase (RdRp), an important drug target, synthesizes viral RNA and is essential for viral replication. While a number of allosteric inhibitors have been reported for hepatitis C virus RdRp, few have been described for DENV RdRp. Following a diverse compound screening campaign and a rigorous hit-to-lead flowchart combining biochemical and biophysical approaches, two DENV RdRp nonnucleoside inhibitors were identified and characterized. These inhibitors show low- to high-micromolar inhibition in DENV RNA polymerization and cell-based assays. X-ray crystallography reveals that they bind in the enzyme RNA template tunnel. One compound (NITD-434) induced an allosteric pocket at the junction of the fingers and palm subdomains by displacing residue V603 in motif B. Binding of another compound (NITD-640) ordered the fingers loop preceding the F motif, close to the RNA template entrance. Most of the amino acid residues that interacted with these compounds are highly conserved in flaviviruses. Both sites are important for polymerase de novo initiation and elongation activities and essential for viral replication. This work provides evidence that the RNA tunnel in DENV RdRp offers interesting target sites for inhibition.IMPORTANCE Dengue virus (DENV), an important arthropod-transmitted human pathogen that causes a spectrum of diseases, has spread dramatically worldwide in recent years. Despite extensive efforts, the only commercial vaccine does not provide adequate protection to naive individuals. DENV NS5 polymerase is a promising drug target, as exemplified by the development of successful commercial drugs against hepatitis C virus (HCV) polymerase and HIV-1 reverse transcriptase. High-throughput screening of compound libraries against this enzyme enabled the discovery of inhibitors that induced binding sites in the RNA template channel. Characterizations by biochemical, biophysical, and reverse genetics approaches provide a better understanding of the biological relevance of these allosteric sites and the way forward to design more-potent inhibitors.

Two RNA Tunnel Inhibitors Bind in Highly Conserved Sites in Dengue Virus NS5 Polymerase: Structural and Functional Studies.,Arora R, Liew CW, Soh TS, Otoo DA, Seh CC, Yue K, Nilar S, Wang G, Yokokawa F, Noble CG, Chen YL, Shi PY, Lescar J, Smith TM, Benson TE, Lim SP J Virol. 2020 Nov 23;94(24). pii: JVI.01130-20. doi: 10.1128/JVI.01130-20. Print , 2020 Nov 23. PMID:32907977[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Arora R, Liew CW, Soh TS, Otoo DA, Seh CC, Yue K, Nilar S, Wang G, Yokokawa F, Noble CG, Chen YL, Shi PY, Lescar J, Smith TM, Benson TE, Lim SP. Two RNA Tunnel Inhibitors Bind in Highly Conserved Sites in Dengue Virus NS5 Polymerase: Structural and Functional Studies. J Virol. 2020 Nov 23;94(24). pii: JVI.01130-20. doi: 10.1128/JVI.01130-20. Print , 2020 Nov 23. PMID:32907977 doi:http://dx.doi.org/10.1128/JVI.01130-20

6xd0, resolution 2.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA