Arabidopsis GH3.12 with ChorismateArabidopsis GH3.12 with Chorismate

Structural highlights

6oms is a 2 chain structure with sequence from Arabidopsis thaliana. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.942Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GH312_ARATH Catalyzes the conjugation of specific amino acids (e.g. Glu and possibly His, Lys, and Met) to their preferred acyl substrates (e.g. 4-substituted benzoates), in a magnesium ion- and ATP-dependent manner. Can use 4-substituted benzoates such as 4-aminobenzoate (pABA), 4-fluorobenzoate and 4-hydroxybenzoate (4-HBA), and, to a lesser extent, benzoate, vanillate and trans-cinnamate, but not 2-substituted benzoates and salicylic acid (SA), as conjugating acyl substrates. Involved in both basal and induced resistance in a SA-dependent manner. Confers resistance to virulent and avirulent pathogens (at least bacteria and oomycetes), and promotes SA glucosides accumulation. Required for the establishment of hyper-sensitive response (HR) upon incompatible interaction and subsequent systemic acquired resistance (SAR).[1] [2] [3] [4] [5] [6] [7] [8]

Publication Abstract from PubMed

To modulate responses to developmental or environmental cues, plants use Gretchen Hagen 3 (GH3) acyl acid amido synthetases to conjugate an amino acid to a plant hormone, a reaction that regulates free hormone concentration and downstream responses. The model plant Arabidopsis thaliana has 19 GH3 proteins, of which 9 have confirmed biochemical functions. One Brassicaceae-specific clade of GH3 proteins was predicted to use benzoate as a substrate and includes AtGH3.7 and AtGH3.12/PBS3. Previously identified as a 4-hydroxybenzoic acid-glutamate synthetase, AtGH3.12/PBS3 influences pathogen defense responses through salicylic acid. Recent work has shown that AtGH3.12/PBS3 uses isochorismate as a substrate, forming an isochorismate-glutamate conjugate that converts into salicylic acid. Here, we show that AtGH3.7 and AtGH3.12/PBS3 can also conjugate chorismate, a precursor of aromatic amino acids and salicylic acid, to cysteine and glutamate, respectively. The X-ray crystal structure of AtGH3.12/PBS3 in complex with AMP and chorismate at 1.94 A resolution, along with site-directed mutagenesis, revealed how the active site potentially accommodates this substrate. Examination of Arabidopsis knockout lines indicated that the gh3.7 mutants do not altered growth and no increased susceptibility to the pathogen Pseudomonas syringae, unlike gh3.12 mutants, which ere more susceptible than wild-type plants, as was the gh3.7/gh3.12 double mutant. The findings of our study suggest that GH3 proteins can use metabolic precursors of aromatic amino acids as substrates.

Brassicaceae-specific Gretchen Hagen 3 acyl acid amido synthetases conjugate amino acids to chorismate, a precursor of aromatic amino acids and salicylic acid.,Holland CK, Westfall CS, Schaffer JE, De Santiago A, Zubieta C, Alvarez S, Jez JM J Biol Chem. 2019 Oct 1. pii: RA119.009949. doi: 10.1074/jbc.RA119.009949. PMID:31575658[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lee MW, Jelenska J, Greenberg JT. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant J. 2008 May;54(3):452-65. doi: 10.1111/j.1365-313X.2008.03439.x. Epub 2008 , Feb 7. PMID:18266921 doi:10.1111/j.1365-313X.2008.03439.x
  2. Warren RF, Merritt PM, Holub E, Innes RW. Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics. 1999 May;152(1):401-12. PMID:10224270
  3. van der Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JD. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J. 2002 Feb;29(4):439-51. PMID:11846877
  4. McDowell JM, Williams SG, Funderburg NT, Eulgem T, Dangl JL. Genetic analysis of developmentally regulated resistance to downy mildew (Hyaloperonospora parasitica) in Arabidopsis thaliana. Mol Plant Microbe Interact. 2005 Nov;18(11):1226-34. PMID:16353557 doi:10.1094/MPMI-18-1226
  5. Lee MW, Lu H, Jung HW, Greenberg JT. A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2. Mol Plant Microbe Interact. 2007 Oct;20(10):1192-200. PMID:17918621 doi:10.1094/MPMI-20-10-1192
  6. Jagadeeswaran G, Raina S, Acharya BR, Maqbool SB, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Plant J. 2007 Jul;51(2):234-46. Epub 2007 May 23. PMID:17521413 doi:10.1111/j.1365-313X.2007.03130.x
  7. Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW. The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol. 2007 Jun;144(2):1144-56. Epub 2007 Apr 27. PMID:17468220 doi:10.1104/pp.107.097691
  8. Okrent RA, Brooks MD, Wildermuth MC. Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. J Biol Chem. 2009 Apr 10;284(15):9742-54. doi: 10.1074/jbc.M806662200. Epub 2009 , Feb 2. PMID:19189963 doi:10.1074/jbc.M806662200
  9. Holland CK, Westfall CS, Schaffer JE, De Santiago A, Zubieta C, Alvarez S, Jez JM. Brassicaceae-specific Gretchen Hagen 3 acyl acid amido synthetases conjugate amino acids to chorismate, a precursor of aromatic amino acids and salicylic acid. J Biol Chem. 2019 Oct 1. pii: RA119.009949. doi: 10.1074/jbc.RA119.009949. PMID:31575658 doi:http://dx.doi.org/10.1074/jbc.RA119.009949

6oms, resolution 1.94Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA