CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH Compound_5 AKA 4-[(2-CARBAMOYLPHEN YL)AMINO]-6-[(5-FLUOROPYRIDIN-2-YL)AMINO]-N-METHYLPYRIDINE -3-CARBOXAMIDECRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH Compound_5 AKA 4-[(2-CARBAMOYLPHEN YL)AMINO]-6-[(5-FLUOROPYRIDIN-2-YL)AMINO]-N-METHYLPYRIDINE -3-CARBOXAMIDE

Structural highlights

6nzf is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.39Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

TYK2_HUMAN Mendelian susceptibility to mycobacterial diseases;Autosomal recessive hyper IgE syndrome. Defects in TYK2 are the cause of protein-tyrosine kinase 2 deficiency (TYK2 deficiency) [MIM:611521; also known as autosomal recessive hyper-IgE syndrome (HIES) with atypical mycobacteriosis. TYK2 deficiency consists of a primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and highly elevated serum IgE.

Function

TYK2_HUMAN Probably involved in intracellular signal transduction by being involved in the initiation of type I IFN signaling. Phosphorylates the interferon-alpha/beta receptor alpha chain.[1]

Publication Abstract from PubMed

As a member of the Janus (JAK) family of nonreceptor tyrosine kinases, TYK2 plays an important role in mediating the signaling of pro-inflammatory cytokines including IL-12, IL-23, and type 1 interferons. The nicotinamide 4, identified by a SPA-based high-throughput screen targeting the TYK2 pseudokinase domain, potently inhibits IL-23 and IFNalpha signaling in cellular assays. The described work details the optimization of this poorly selective hit (4) to potent and selective molecules such as 47 and 48. The discoveries described herein were critical to the eventual identification of the clinical TYK2 JH2 inhibitor (see following report in this issue). Compound 48 provided robust inhibition in a mouse IL-12-induced IFNgamma pharmacodynamic model as well as efficacy in an IL-23 and IL-12-dependent mouse colitis model. These results demonstrate the ability of TYK2 JH2 domain binders to provide a highly selective alternative to conventional TYK2 orthosteric inhibitors.

Identification of N-Methyl Nicotinamide and N-Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2).,Moslin R, Zhang Y, Wrobleski ST, Lin S, Mertzman M, Spergel S, Tokarski JS, Strnad J, Gillooly K, McIntyre KW, Zupa-Fernandez A, Cheng L, Sun H, Chaudhry C, Huang C, D'Arienzo C, Heimrich E, Yang X, Muckelbauer JK, Chang C, Tredup J, Mulligan D, Xie D, Aranibar N, Chiney M, Burke JR, Lombardo L, Carter PH, Weinstein DS J Med Chem. 2019 Jul 17. doi: 10.1021/acs.jmedchem.9b00443. PMID:31314518[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Colamonici O, Yan H, Domanski P, Handa R, Smalley D, Mullersman J, Witte M, Krishnan K, Krolewski J. Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol. 1994 Dec;14(12):8133-42. PMID:7526154
  2. Moslin R, Zhang Y, Wrobleski ST, Lin S, Mertzman M, Spergel S, Tokarski JS, Strnad J, Gillooly K, McIntyre KW, Zupa-Fernandez A, Cheng L, Sun H, Chaudhry C, Huang C, D'Arienzo C, Heimrich E, Yang X, Muckelbauer JK, Chang C, Tredup J, Mulligan D, Xie D, Aranibar N, Chiney M, Burke JR, Lombardo L, Carter PH, Weinstein DS. Identification of N-Methyl Nicotinamide and N-Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). J Med Chem. 2019 Jul 17. doi: 10.1021/acs.jmedchem.9b00443. PMID:31314518 doi:http://dx.doi.org/10.1021/acs.jmedchem.9b00443

6nzf, resolution 2.39Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA