Structure of human endothelial nitric oxide synthase heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(1-methylazetidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amineStructure of human endothelial nitric oxide synthase heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(1-methylazetidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine

Structural highlights

6nhf is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.83Å
Ligands:, , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NOS3_HUMAN Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets.[1] Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.[2]

Publication Abstract from PubMed

Effective delivery of therapeutic drugs into the human brain is one of the most challenging tasks in central nervous system drug development because of the blood-brain barrier (BBB). To overcome the BBB, both passive permeability and efflux transporter liability of a compound must be addressed. Herein, we report our optimization related to BBB penetration of neuronal nitric oxide synthase (nNOS) inhibitors toward the development of new drugs for neurodegenerative diseases. Various approaches, including enhancing lipophilicity and rigidity of new inhibitors and modulating the p Ka of amino groups, have been employed. In addition to determining inhibitor potency and selectivity, crystal structures of most newly designed compounds complexed to various nitric oxide synthase isoforms have been determined. We have discovered a new analogue (21), which exhibits not only excellent potency ( Ki < 30 nM) in nNOS inhibition but also a significantly low P-glycoprotein and breast-cancer-resistant protein substrate liability as indicated by an efflux ratio of 0.8 in the Caco-2 bidirectional assay.

Optimization of Blood-Brain Barrier Permeability with Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibitors Having a 2-Aminopyridine Scaffold.,Do HT, Li H, Chreifi G, Poulos TL, Silverman RB J Med Chem. 2019 Feb 25. doi: 10.1021/acs.jmedchem.8b02032. PMID:30802056[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007 May;21(7):1556-64. Epub 2007 Jan 30. PMID:17264164 doi:http://dx.doi.org/10.1096/fj.06-7434com
  2. Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007 May;21(7):1556-64. Epub 2007 Jan 30. PMID:17264164 doi:http://dx.doi.org/10.1096/fj.06-7434com
  3. Do HT, Li H, Chreifi G, Poulos TL, Silverman RB. Optimization of Blood-Brain Barrier Permeability with Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibitors Having a 2-Aminopyridine Scaffold. J Med Chem. 2019 Feb 25. doi: 10.1021/acs.jmedchem.8b02032. PMID:30802056 doi:http://dx.doi.org/10.1021/acs.jmedchem.8b02032

6nhf, resolution 1.83Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA