CryoEM structure of human PAC1 receptor in complex with maxadilanCryoEM structure of human PAC1 receptor in complex with maxadilan

Structural highlights

6m1h is a 6 chain structure with sequence from Camelus glama and Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:GNG2 (HUMAN), GNB1 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[GBG2_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (By similarity). [MAXA_LUTLO] Potent vasodilator. It would act as an antagonist at the endothelin receptor. This peptide may play a critical role in the enhancement of Leishmania infectivity attributed to Sand fly saliva. [GBB1_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction.[1]

Publication Abstract from PubMed

The pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R) belongs to the secretin receptor family and is widely distributed in the central neural system and peripheral organs. Abnormal activation of the receptor mediates trigeminovascular activation and sensitization, which is highly related to migraine, making PAC1R a potential therapeutic target. Elucidation of PAC1R activation mechanism would benefit discovery of therapeutic drugs for neuronal disorders. PAC1R activity is governed by pituitary adenylate cyclase-activating polypeptide (PACAP), known as a major vasodilator neuropeptide, and maxadilan, a native peptide from the sand fly, which is also capable of activating the receptor with similar potency. These peptide ligands have divergent sequences yet initiate convergent PAC1R activity. It is of interest to understand the mechanism of PAC1R ligand recognition and receptor activity regulation through structural biology. Here we report two near-atomic resolution cryo-EM structures of PAC1R activated by PACAP38 or maxadilan, providing structural insights into two distinct ligand binding modes. The structures illustrate flexibility of the extracellular domain (ECD) for ligands with distinct conformations, where ECD accommodates ligands in different orientations while extracellular loop 1 (ECL1) protrudes to further anchor the ligand bound in the orthosteric site. By structure-guided molecular modeling and mutagenesis, we tested residues in the ligand-binding pockets and identified clusters of residues that are critical for receptor activity. The structures reported here for the first time elucidate the mechanism of specificity and flexibility of ligand recognition and binding for PAC1R, and provide insights toward the design of therapeutic molecules targeting PAC1R.

Cryo-EM structures of PAC1 receptor reveal ligand binding mechanism.,Wang J, Song X, Zhang D, Chen X, Li X, Sun Y, Li C, Song Y, Ding Y, Ren R, Harrington EH, Hu LA, Zhong W, Xu C, Huang X, Wang HW, Ma Y Cell Res. 2020 Feb 11. pii: 10.1038/s41422-020-0280-2. doi:, 10.1038/s41422-020-0280-2. PMID:32047270[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Johnston CA, Kimple AJ, Giguere PM, Siderovski DP. Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Structure. 2008 Jul;16(7):1086-94. PMID:18611381 doi:http://dx.doi.org/10.1016/j.str.2008.04.010
  2. Wang J, Song X, Zhang D, Chen X, Li X, Sun Y, Li C, Song Y, Ding Y, Ren R, Harrington EH, Hu LA, Zhong W, Xu C, Huang X, Wang HW, Ma Y. Cryo-EM structures of PAC1 receptor reveal ligand binding mechanism. Cell Res. 2020 Feb 11. pii: 10.1038/s41422-020-0280-2. doi:, 10.1038/s41422-020-0280-2. PMID:32047270 doi:http://dx.doi.org/10.1038/s41422-020-0280-2

6m1h, resolution 3.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA