Structure of human DNA polymerase beta complexed with 8OA in the template base paired with incoming non-hydrolyzable TTPStructure of human DNA polymerase beta complexed with 8OA in the template base paired with incoming non-hydrolyzable TTP

Structural highlights

6e3v is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.96Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DPOLB_HUMAN Repair polymerase that plays a key role in base-excision repair. Has 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity that removes the 5' sugar phosphate and also acts as a DNA polymerase that adds one nucleotide to the 3' end of the arising single-nucleotide gap. Conducts 'gap-filling' DNA synthesis in a stepwise distributive fashion rather than in a processive fashion as for other DNA polymerases.[1] [2] [3] [4]

Publication Abstract from PubMed

Reactive oxygen species attack DNA to produce 7,8-dihyro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major lesions. The structural basis for the mutagenicity of oxoG, which induces G to T mutations, is well understood. However, the structural basis for the mutagenic potential of oxoA, which induces A to C mutations, remains poorly understood. To gain insight into oxoA-induced mutagenesis, we conducted kinetic studies of human DNA polymerases beta and eta replicating across oxoA and structural studies of polbeta incorporating dTTP/dGTP opposite oxoA. While poleta readily bypassed oxoA, it incorporated dGTP opposite oxoA with a catalytic specificity comparable to that of correct insertion, underscoring the promutagenic nature of the major oxidative adenine lesion. Poleta and polbeta incorporated dGTP opposite oxoA approximately 170-fold and approximately 100-fold more efficiently than that opposite dA, respectively, indicating that the 8-oxo moiety greatly facilitated error-prone replication. Crystal structures of polbeta showed that, when paired with an incoming dTTP, the templating oxoA adopted an anti conformation and formed Watson-Crick base pair. When paired with dGTP, oxoA adopted a syn conformation and formed a Hoogsteen base pair with Watson-Crick-like geometry, highlighting the dual-coding potential of oxoA. The templating oxoA was stabilized by Lys280-mediated stacking and hydrogen bonds. Overall, these results provide insight into the mutagenic potential and dual-coding nature of the major oxidative adenine lesion.

Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases.,Koag MC, Jung H, Lee S J Am Chem Soc. 2019 Mar 20;141(11):4584-4596. doi: 10.1021/jacs.8b08551. Epub, 2019 Mar 7. PMID:30817143[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bennett RA, Wilson DM 3rd, Wong D, Demple B. Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7166-9. PMID:9207062
  2. Matsumoto Y, Kim K, Katz DS, Feng JA. Catalytic center of DNA polymerase beta for excision of deoxyribose phosphate groups. Biochemistry. 1998 May 5;37(18):6456-64. PMID:9572863 doi:10.1021/bi9727545
  3. DeMott MS, Beyret E, Wong D, Bales BC, Hwang JT, Greenberg MM, Demple B. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone. J Biol Chem. 2002 Mar 8;277(10):7637-40. Epub 2002 Jan 22. PMID:11805079 doi:10.1074/jbc.C100577200
  4. Parsons JL, Dianova II, Khoronenkova SV, Edelmann MJ, Kessler BM, Dianov GL. USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta. Mol Cell. 2011 Mar 4;41(5):609-15. doi: 10.1016/j.molcel.2011.02.016. PMID:21362556 doi:10.1016/j.molcel.2011.02.016
  5. Koag MC, Jung H, Lee S. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. J Am Chem Soc. 2019 Mar 20;141(11):4584-4596. doi: 10.1021/jacs.8b08551. Epub, 2019 Mar 7. PMID:30817143 doi:http://dx.doi.org/10.1021/jacs.8b08551

6e3v, resolution 1.96Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA