6bnr
Carbonmonoxy hemoglobin in complex with the antisickling agent 5-methoxy-2-(pyridin-2-ylmethoxy)benzaldehyde (INN310)Carbonmonoxy hemoglobin in complex with the antisickling agent 5-methoxy-2-(pyridin-2-ylmethoxy)benzaldehyde (INN310)
Structural highlights
DiseaseHBA_HUMAN Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2] FunctionHBA_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues. Publication Abstract from PubMedHypoxia-induced polymerization of sickle hemoglobin (Hb S) is the principal phenomenon that underlays the pathophysiology and morbidity associated with sickle cell disease (SCD). Opportunely, as an allosteric protein, hemoglobin (Hb) serves as a convenient and potentially critical druggable target. Consequently, molecules that prevent Hb S polymerization (Hb modifiers), and the associated erythrocyte sickling have been investigated-and retain significant interest-as a viable therapeutic strategy for SCD. This group of molecules, including aromatic aldehydes, form high oxygen affinity Schiff-base adducts with Hb S, which are resistant to polymerization. Here, we report the design and synthesis of novel potent antisickling agents (SAJ-009, SAJ-310 and SAJ-270) based on the pharmacophore of vanillin and INN-312, a previously reported pyridyl derivative of vanillin. These novel derivatives exhibited superior in vitro binding and pharmacokinetic properties compared to vanillin, which translated into significantly enhanced allosteric and antisickling properties. Crystal structure studies of liganded Hb in the R2 quaternary state in complex with SAJ-310 provided important insights into the allosteric and antisickling properties of this group of compounds. While these derivatives generally show similar in vitro biological potency, significant structure-dependent differences in their biochemical profiles would help predict the most promising candidates for successful in vivo pre-clinical translational studies and inform further structural modifications to improve on their pharmacologic properties. Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease.,Pagare PP, Ghatge MS, Musayev FN, Deshpande TM, Chen Q, Braxton C, Kim S, Venitz J, Zhang Y, Abdulmalik O, Safo MK Bioorg Med Chem. 2018 May 15;26(9):2530-2538. doi: 10.1016/j.bmc.2018.04.015., Epub 2018 Apr 6. PMID:29655608[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|