Red Light-Absorbing State of NpR6012g4, a Red/Green CyanobacteriochromeRed Light-Absorbing State of NpR6012g4, a Red/Green Cyanobacteriochrome

Structural highlights

6bhn is a 1 chain structure with sequence from Nostoc punctiforme PCC 73102. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR, 10 models
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

B2IU14_NOSP7

Publication Abstract from PubMed

Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores. Spectroscopic and biochemical studies have demonstrated heterogeneity in both photostates, but the structural basis for such heterogeneity remains unclear. We report solution NMR structures for both photostates of the red/green CBCR NpR6012g4 from Nostoc punctiforme In addition to identifying structural changes accompanying photoconversion, these structures reveal structural heterogeneity for residues Trp655 and Asp657 in the red-absorbing NpR6012g4 dark state, yielding two distinct environments for the phycocyanobilin chromophore. We use site-directed mutagenesis and fluorescence and absorbance spectroscopy to assign an orange-absorbing population in the NpR6012g4 dark state to the minority configuration for Asp657. This population does not undergo full, productive photoconversion, as shown by time-resolved spectroscopy and absorption spectroscopy at cryogenic temperature. Our studies thus elucidate the spectral and photochemical consequences of structural heterogeneity in a member of the phytochrome superfamily, insights that should inform efforts to improve photochemical or fluorescence quantum yields in the phytochrome superfamily.

Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4.,Lim S, Yu Q, Gottlieb SM, Chang CW, Rockwell NC, Martin SS, Madsen D, Lagarias JC, Larsen DS, Ames JB Proc Natl Acad Sci U S A. 2018 Apr 9. pii: 1720682115. doi:, 10.1073/pnas.1720682115. PMID:29632180[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lim S, Yu Q, Gottlieb SM, Chang CW, Rockwell NC, Martin SS, Madsen D, Lagarias JC, Larsen DS, Ames JB. Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4. Proc Natl Acad Sci U S A. 2018 Apr 9. pii: 1720682115. doi:, 10.1073/pnas.1720682115. PMID:29632180 doi:http://dx.doi.org/10.1073/pnas.1720682115
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA