Structural highlightsFunctionOMPA1_NEIMC Serves as a slightly cation selective porin. Major antigen on the gonococcal cell surface and it may have pathogenic properties in addition to its porin activity.FHBP_NEIMB A bacterial surface lipoprotein that binds host (human) complement factor H (fH, gene CFH), binding contributes to the avoidance of complement-mediated lysis by N.meningitidis. Binding of fH to the bacteria surface is independent of bacterial sialic acid moieties (PubMed:16751403). fH binding affinity is high enough that it may sequester plasma fH, depleting its circulating levels and de-regulating complement in the host (Probable). This protein induces high levels of bactericidal antibodies in mice (PubMed:12642606, PubMed:15039331, PubMed:15664958, PubMed:21753121, PubMed:23133374).[1] [2] [3] [4] [5] [6] [7]
Publication Abstract from PubMed
There is an urgent need to develop vaccines against pathogenic bacteria. However, this is often hindered by antigenic diversity and difficulties encountered manufacturing membrane proteins. Here we show how to use structure-based design to develop chimeric antigens (ChAs) for subunit vaccines. ChAs are generated against serogroup B Neisseria meningitidis (MenB), the predominant cause of meningococcal disease in wealthy countries. MenB ChAs exploit factor H binding protein (fHbp) as a molecular scaffold to display the immunogenic VR2 epitope from the integral membrane protein PorA. Structural analyses demonstrate fHbp is correctly folded and the PorA VR2 epitope adopts an immunogenic conformation. In mice, immunisation with ChAs generates fHbp and PorA antibodies that recognise the antigens expressed by clinical MenB isolates; these antibody responses correlate with protection against meningococcal disease. Application of ChAs is therefore a potentially powerful approach to develop multivalent subunit vaccines, which can be tailored to circumvent pathogen diversity.
Structure-based design of chimeric antigens for multivalent protein vaccines.,Hollingshead S, Jongerius I, Exley RM, Johnson S, Lea SM, Tang CM Nat Commun. 2018 Mar 13;9(1):1051. doi: 10.1038/s41467-018-03146-7. PMID:29535307[8]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Masignani V, Comanducci M, Giuliani MM, Bambini S, Adu-Bobie J, Arico B, Brunelli B, Pieri A, Santini L, Savino S, Serruto D, Litt D, Kroll S, Welsch JA, Granoff DM, Rappuoli R, Pizza M. Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J Exp Med. 2003 Mar 17;197(6):789-99. PMID:12642606 doi:10.1084/jem.20021911
- ↑ Fletcher LD, Bernfield L, Barniak V, Farley JE, Howell A, Knauf M, Ooi P, Smith RP, Weise P, Wetherell M, Xie X, Zagursky R, Zhang Y, Zlotnick GW. Vaccine potential of the Neisseria meningitidis 2086 lipoprotein. Infect Immun. 2004 Apr;72(4):2088-100. PMID:15039331 doi:10.1128/IAI.72.4.2088-2100.2004
- ↑ Giuliani MM, Santini L, Brunelli B, Biolchi A, Aricò B, Di Marcello F, Cartocci E, Comanducci M, Masignani V, Lozzi L, Savino S, Scarselli M, Rappuoli R, Pizza M. The region comprising amino acids 100 to 255 of Neisseria meningitidis lipoprotein GNA 1870 elicits bactericidal antibodies. Infect Immun. 2005 Feb;73(2):1151-60. PMID:15664958 doi:10.1128/IAI.73.2.1151-1160.2005
- ↑ Schneider MC, Exley RM, Chan H, Feavers I, Kang YH, Sim RB, Tang CM. Functional significance of factor H binding to Neisseria meningitidis. J Immunol. 2006 Jun 15;176(12):7566-75. PMID:16751403 doi:10.4049/jimmunol.176.12.7566
- ↑ Scarselli M, Arico B, Brunelli B, Savino S, Di Marcello F, Palumbo E, Veggi D, Ciucchi L, Cartocci E, Bottomley MJ, Malito E, Lo Surdo P, Comanducci M, Giuliani MM, Cantini F, Dragonetti S, Colaprico A, Doro F, Giannetti P, Pallaoro M, Brogioni B, Tontini M, Hilleringmann M, Nardi-Dei V, Banci L, Pizza M, Rappuoli R. Rational design of a meningococcal antigen inducing broad protective immunity. Sci Transl Med. 2011 Jul 13;3(91):91ra62. PMID:21753121 doi:10.1126/scitranslmed.3002234
- ↑ Johnson S, Tan L, van der Veen S, Caesar J, Goicoechea De Jorge E, Harding RJ, Bai X, Exley RM, Ward PN, Ruivo N, Trivedi K, Cumber E, Jones R, Newham L, Staunton D, Ufret-Vincenty R, Borrow R, Pickering MC, Lea SM, Tang CM. Design and Evaluation of Meningococcal Vaccines through Structure-Based Modification of Host and Pathogen Molecules. PLoS Pathog. 2012 Oct;8(10):e1002981. doi: 10.1371/journal.ppat.1002981. Epub, 2012 Oct 25. PMID:23133374 doi:http://dx.doi.org/10.1371/journal.ppat.1002981
- ↑ Schneider MC, Prosser BE, Caesar JJ, Kugelberg E, Li S, Zhang Q, Quoraishi S, Lovett JE, Deane JE, Sim RB, Roversi P, Johnson S, Tang CM, Lea SM. Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature. 2009 Apr 16;458(7240):890-3. Epub 2009 Feb 18. PMID:19225461 doi:10.1038/nature07769
- ↑ Hollingshead S, Jongerius I, Exley RM, Johnson S, Lea SM, Tang CM. Structure-based design of chimeric antigens for multivalent protein vaccines. Nat Commun. 2018 Mar 13;9(1):1051. doi: 10.1038/s41467-018-03146-7. PMID:29535307 doi:http://dx.doi.org/10.1038/s41467-018-03146-7
| |