Crystal structure of the Zn-RIDC1 complex bearing six interfacial disulfide bondsCrystal structure of the Zn-RIDC1 complex bearing six interfacial disulfide bonds

Structural highlights

5l32 is a 4 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

C562_ECOLX Electron-transport protein of unknown function.

Publication Abstract from PubMed

A major goal in metalloprotein design is to build protein scaffolds from scratch that allow precise control over metal coordination. A particular challenge in this regard is the construction of allosteric systems in which metal coordination equilibria are coupled to other chemical events that take place elsewhere in the protein scaffold. We previously developed a metal-templated self-assembly strategy (MeTIR) to build supramolecular protein complexes with tailorable interfaces from monomeric building blocks. Here, using this strategy, we have incorporated multiple disulfide bonds into the interfaces of a Zn-templated cytochrome cb562 assembly in order to create mechanical strain on the quaternary structural level. Structural and biophysical analyses indicate that this strain leads to an allosteric system in which Zn2+ binding and dissociation are remotely coupled to the formation and breakage of a disulfide bond over a distance of >14 A. The breakage of this strained bond upon Zn2+ dissociation occurs in the absence of any reductants, apparently through a hydrolytic mechanism that generates a sulfenic acid/thiol pair.

De Novo Design of an Allosteric Metalloprotein Assembly with Strained Disulfide Bonds.,Churchfield LA, Medina-Morales A, Brodin JD, Perez A, Tezcan FA J Am Chem Soc. 2016 Oct 12;138(40):13163-13166. Epub 2016 Sep 27. PMID:27649076[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Churchfield LA, Medina-Morales A, Brodin JD, Perez A, Tezcan FA. De Novo Design of an Allosteric Metalloprotein Assembly with Strained Disulfide Bonds. J Am Chem Soc. 2016 Oct 12;138(40):13163-13166. Epub 2016 Sep 27. PMID:27649076 doi:http://dx.doi.org/10.1021/jacs.6b08458

5l32, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA