MutY N-terminal domain in complex with undamaged DNAMutY N-terminal domain in complex with undamaged DNA

Structural highlights

5kn8 is a 3 chain structure with sequence from Geobacillus stearothermophilus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.81Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MUTY_GEOSE Base excision repair (BER) glycosylase that initiates repair of A:oxoG to C:G by removing the inappropriately paired adenine base from the DNA backbone, generating an abasic site product (PubMed:25995449) (PubMed:14961129). 8-oxoguanine (oxoG) is a genotoxic DNA lesion resulting from oxidation of guanine; this residue is misread by replicative DNA polymerases, that insert adenine instead of cytosine opposite the oxidized damaged base. Shows a powerful dicrimination of A versus C, since it does not cleave cytosine in oxoG:C pairs (PubMed:25995449). May also be able to remove adenine from A:G mispairs, although this activity may not be physiologically relevant (PubMed:14961129).[1] [2]

Publication Abstract from PubMed

The highly mutagenic A:oxoG (8-oxoguanine) base-pair is generated mainly by misreplication of the C:oxoG base-pair, the oxidation product of the C:G base-pair. A:oxoG base-pair is particularly insidious because neither base in it carries faithful information to direct the repair of the other. The bacterial MutY (MUTYH in humans) adenine DNA glycosylase is able to initiate the repair of A:oxoG by selectively cleaving the A base from the A:oxoG base-pair. The difference between faithful repair and wreaking mutagenic havoc on the genome lies in the accurate discrimination between two structurally similar base-pairs: A:oxoG and A:T. Here we present two crystal structures of the MutY N-terminal domain in complex with either undamaged DNA or DNA containing an intrahelical lesion. These structures have captured for the first time, a DNA glycosylase scanning the genome for a damaged base in the very first stage of lesion-recognition and the base-extrusion pathway. The mode of interaction observed here has suggested a common lesion-scanning mechanism across the entire helix-hairpin-helix superfamily to which MutY belongs. In addition, small-angle X-ray scattering (SAXS) studies together with accompanying biochemical assays have suggested a possible role played by the C-terminal oxoG-recognition domain of MutY in lesion-scanning.

Structural Basis for the Lesion-scanning Mechanism of the Bacterial MutY DNA Glycosylase.,Wang L, Chakravarthy S, Verdine GL J Biol Chem. 2017 Jan 27. pii: jbc.M116.757039. doi: 10.1074/jbc.M116.757039. PMID:28130451[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wang L, Lee SJ, Verdine G. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase. J Biol Chem. 2015 May 20. pii: jbc.M115.657866. PMID:25995449 doi:http://dx.doi.org/10.1074/jbc.M115.657866
  2. Fromme JC, Banerjee A, Huang SJ, Verdine GL. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature. 2004 Feb 12;427(6975):652-6. PMID:14961129 doi:10.1038/nature02306
  3. Wang L, Chakravarthy S, Verdine GL. Structural Basis for the Lesion-scanning Mechanism of the Bacterial MutY DNA Glycosylase. J Biol Chem. 2017 Jan 27. pii: jbc.M116.757039. doi: 10.1074/jbc.M116.757039. PMID:28130451 doi:http://dx.doi.org/10.1074/jbc.M116.757039

5kn8, resolution 1.81Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA