p73 homo-tetramerization domain mutant IIp73 homo-tetramerization domain mutant II

Structural highlights

5hoc is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.3600779Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

P73_HUMAN Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein.[1] [2] [3]

Publication Abstract from PubMed

Members of the p53 tumor-suppressor family are expressed as multiple isoforms. Isoforms with an N-terminal transactivation domain are transcriptionally active, while those ones lacking this domain often inhibit the transcriptional activity of other family members. In squamous cell carcinomas, the high expression level of DeltaNp63alpha inhibits the tumor-suppressor function of TAp73beta. This can in principle be due to blocking of the promoter or by direct interaction between both proteins. p63 and p73 can hetero-oligomerize through their tetramerization domains and a hetero-tetramer consisting of two p63 and two p73 molecules is thermodynamically more stable than both homo-tetramers. Here we show that cells expressing both p63 and p73 exist in mouse epidermis and hair follicle and that hetero-tetramer complexes can be detected by immunoprecipitation in differentiating keratinocytes. Through structure determination of the hetero-tetramer, we reveal why this hetero-tetramer is the thermodynamically preferred species. We have created mutants that exclusively form either hetero-tetramers or homo-tetramers, allowing to investigate the function of these p63/p73 hetero-tetramers. Using these tools, we show that inhibition of TAp73beta in squamous cell carcinomas is due to promoter squelching and not direct interaction.Cell Death and Differentiation advance online publication, 7 October 2016; doi:10.1038/cdd.2016.83.

Mechanism of TAp73 inhibition by DeltaNp63 and structural basis of p63/p73 hetero-tetramerization.,Gebel J, Luh LM, Coutandin D, Osterburg C, Lohr F, Schafer B, Frombach AS, Sumyk M, Buchner L, Krojer T, Salah E, Mathea S, Guntert P, Knapp S, Dotsch V Cell Death Differ. 2016 Oct 7. doi: 10.1038/cdd.2016.83. PMID:27716744[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F, Hugli B, Graber HU, De Laurenzi V, Fey MF, Melino G, Tobler A. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 2001 Dec;8(12):1213-23. PMID:11753569 doi:10.1038/sj.cdd.4400962
  2. Kaelin WG Jr. The emerging p53 gene family. J Natl Cancer Inst. 1999 Apr 7;91(7):594-8. PMID:10203277
  3. Koida N, Ozaki T, Yamamoto H, Ono S, Koda T, Ando K, Okoshi R, Kamijo T, Omura K, Nakagawara A. Inhibitory role of Plk1 in the regulation of p73-dependent apoptosis through physical interaction and phosphorylation. J Biol Chem. 2008 Mar 28;283(13):8555-63. doi: 10.1074/jbc.M710608200. Epub 2008 , Jan 3. PMID:18174154 doi:10.1074/jbc.M710608200
  4. Gebel J, Luh LM, Coutandin D, Osterburg C, Lohr F, Schafer B, Frombach AS, Sumyk M, Buchner L, Krojer T, Salah E, Mathea S, Guntert P, Knapp S, Dotsch V. Mechanism of TAp73 inhibition by DeltaNp63 and structural basis of p63/p73 hetero-tetramerization. Cell Death Differ. 2016 Oct 7. doi: 10.1038/cdd.2016.83. PMID:27716744 doi:http://dx.doi.org/10.1038/cdd.2016.83

5hoc, resolution 1.36Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA