Human Gcn5 bound to butyryl-CoAHuman Gcn5 bound to butyryl-CoA

Structural highlights

5h86 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.08Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KAT2A_HUMAN Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Acetylation of histones gives a specific tag for epigenetic transcription activation. Has significant histone acetyltransferase activity with core histones, but not with nucleosome core particles. Also acetylates non-histone proteins, such as CEBPB (PubMed:17301242). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes.[1] [2]

Publication Abstract from PubMed

Gcn5 is a conserved acetyltransferase that regulates transcription by acetylating the N-terminal tails of histones. Motivated by recent studies identifying a chemically diverse array of lysine acyl modifications in vivo, the acyl-chain specificity of the acetyltransferase human Gcn5 (Gcn5L2) was examined. Whereas Gcn5L2 robustly catalyzes lysine acetylation, the acyltransferase activity of Gcn5L2 becomes progressively weaker with increasing acyl-chain length. To understand how Gcn5 discriminates between different acyl-CoA molecules, structures of the catalytic domain of human Gcn5L2 bound to propionyl-CoA and butyryl-CoA were determined. Although the active site of Gcn5L2 can accommodate propionyl-CoA and butyryl-CoA without major structural rearrangements, butyryl-CoA adopts a conformation incompatible with catalysis that obstructs the path of the incoming lysine residue and acts as a competitive inhibitor of Gcn5L2 versus acetyl-CoA. These structures demonstrate how Gcn5L2 discriminates between acyl-chain donors and explain why Gcn5L2 has weak activity for acyl moieties that are larger than an acetyl group.

Structural basis for acyl-group discrimination by human Gcn5L2.,Ringel AE, Wolberger C Acta Crystallogr D Struct Biol. 2016 Jul 1;72(Pt 7):841-8. doi:, 10.1107/S2059798316007907. Epub 2016 Jun 23. PMID:27377381[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wiper-Bergeron N, Salem HA, Tomlinson JJ, Wu D, Hache RJ. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2703-8. Epub 2007 Feb 14. PMID:17301242 doi:http://dx.doi.org/10.1073/pnas.0607378104
  2. Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, Wu J, Lill JR, Zha J. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol. 2009 Mar;29(5):1176-88. doi: 10.1128/MCB.01599-08. Epub 2008 Dec, 22. PMID:19103755 doi:10.1128/MCB.01599-08
  3. Ringel AE, Wolberger C. Structural basis for acyl-group discrimination by human Gcn5L2. Acta Crystallogr D Struct Biol. 2016 Jul 1;72(Pt 7):841-8. doi:, 10.1107/S2059798316007907. Epub 2016 Jun 23. PMID:27377381 doi:http://dx.doi.org/10.1107/S2059798316007907

5h86, resolution 2.08Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA