Carbonic Anhydrase II in complex with Sulfonamide InhibitorCarbonic Anhydrase II in complex with Sulfonamide Inhibitor

Structural highlights

5eij is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.99Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]

Function

CAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]

Publication Abstract from PubMed

SLC-0111 (4-(4-fluorophenylureido)-benzenesulfonamide) is the first carbonic anhydrase (CA, EC 4.2.1.1) IX inhibitor to reach phase I clinical trials as an antitumor/antimetastatic agent. Here we report a kinetic and X-ray crystallographic study of a congener of SLC-0111 which incorporates a thioureido instead of ureido linker between the two aromatic rings as inhibitor of four physiologically relevant CA isoforms. Similar to SLC-0111, the thioureido derivative was a weak hCA I and II inhibitor and a potent one against hCA IX and XII. X-ray crystallography of its adduct with hCA II and comparison of the structure with that of other five hCA II-sulfonamide adducts belonging to the SLC-0111 series, afforded us to understand the particular inhibition profile of the new sulfonamide. Similar to SLC-0111, the thioureido sulfonamide primarily interacted with the hydrophobic side of the hCA II active site, with the tail participating in van der Waals interactions with Phe131 and Pro202, in addition to the coordination of the deprotonated sulfonamide to the active site metal ion. On the contrary, the tail of other sulfonamides belonging to the SLC-0111 series (2-isopropyl-phenyl; 3-nitrophenyl) were orientated towards the hydrophilic half of the active site, which was correlated with orders of magnitude better inhibitory activity against hCA II, and a loss of selectivity for the inhibition of the tumor-associated CAs.

Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111.,Lomelino CL, Mahon BP, McKenna R, Carta F, Supuran CT Bioorg Med Chem. 2016 Mar 1;24(5):976-81. doi: 10.1016/j.bmc.2016.01.019. Epub, 2016 Jan 11. PMID:26810836[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
  8. Lomelino CL, Mahon BP, McKenna R, Carta F, Supuran CT. Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111. Bioorg Med Chem. 2016 Mar 1;24(5):976-81. doi: 10.1016/j.bmc.2016.01.019. Epub, 2016 Jan 11. PMID:26810836 doi:http://dx.doi.org/10.1016/j.bmc.2016.01.019

5eij, resolution 1.99Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA