5b5r
Crystal structure of GSDMA3Crystal structure of GSDMA3
Structural highlights
DiseaseGSDA3_MOUSE Defects in Gsdma3 are the cause of a number of alopecia phenotypes, bareskin (Bsk), defolliculated (Dfl), finnegan (Fgn) reduced coat 2 (Rco2), Rex-denuded (Re-den) and recombination induced mutation 3 (Rim3). These are dominant conditions characterized by loss of hair.[1] [2] [3] FunctionGSDA3_MOUSE Upon activation, mediates pyroptosis (PubMed:26375003). May play a role in the transition from catagen to telogen at the end of hair follicle morphogenesis (PubMed:15475261).[4] [5] Publication Abstract from PubMedInflammatory caspases cleave the gasdermin D (GSDMD) protein to trigger pyroptosis, a lytic form of cell death that is crucial for immune defences and diseases. GSDMD contains a functionally important gasdermin-N domain that is shared in the gasdermin family. The functional mechanism of action of gasdermin proteins is unknown. Here we show that the gasdermin-N domains of the gasdermin proteins GSDMD, GSDMA3 and GSDMA can bind membrane lipids, phosphoinositides and cardiolipin, and exhibit membrane-disrupting cytotoxicity in mammalian cells and artificially transformed bacteria. Gasdermin-N moved to the plasma membrane during pyroptosis. Purified gasdermin-N efficiently lysed phosphoinositide/cardiolipin-containing liposomes and formed pores on membranes made of artificial or natural phospholipid mixtures. Most gasdermin pores had an inner diameter of 10-14 nm and contained 16 symmetric protomers. The crystal structure of GSDMA3 showed an autoinhibited two-domain architecture that is conserved in the gasdermin family. Structure-guided mutagenesis demonstrated that the liposome-leakage and pore-forming activities of the gasdermin-N domain are required for pyroptosis. These findings reveal the mechanism for pyroptosis and provide insights into the roles of the gasdermin family in necrosis, immunity and diseases. Pore-forming activity and structural autoinhibition of the gasdermin family.,Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F Nature. 2016 Jul 7;535(7610):111-6. PMID:27281216[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|