Crystal structure of human ferritin Phe167SerfsX26 mutant.Crystal structure of human ferritin Phe167SerfsX26 mutant.

Structural highlights

4v6b is a 144 chain structure with sequence from Homo sapiens. This structure supersedes the now removed PDB entries 3hx2, 3hx5 and 3hx7. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.85Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q6S4P3_HUMAN Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis (By similarity).[RuleBase:RU000622]

Publication Abstract from PubMed

Mutations in the coding sequence of the ferritin light chain (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy, which is characterized by the presence of intracellular inclusion bodies containing the mutant FTL polypeptide and by abnormal accumulation of iron in the brain. Here, we describe the x-ray crystallographic structure and report functional studies of ferritin homopolymers formed from the mutant FTL polypeptide p.Phe167SerfsX26, which has a C terminus that is altered in amino acid sequence and length. The structure was determined and refined to 2.85 A resolution and was very similar to the wild type between residues Ile-5 and Arg-154. However, instead of the E-helices normally present in wild type ferritin, the C-terminal sequences of all 24 mutant subunits showed substantial amounts of disorder, leading to multiple C-terminal polypeptide conformations and a large disruption of the normally tiny 4-fold axis pores. Functional studies underscored the importance of the mutant C-terminal sequence in iron-induced precipitation and revealed iron mishandling by soluble mutant FTL homopolymers in that only wild type incorporated iron when in direct competition in solution with mutant ferritin. Even without competition, the amount of iron incorporation over the first few minutes differed severalfold. Our data suggest that disruption at the 4-fold pores may lead to direct iron mishandling through attenuated iron incorporation by the soluble form of mutant ferritin and that the disordered C-terminal polypeptides may play a major role in iron-induced precipitation and formation of ferritin inclusion bodies in hereditary ferritinopathy.

Unraveling of the E-helices and disruption of 4-fold pores are associated with iron mishandling in a mutant ferritin causing neurodegeneration.,Baraibar MA, Muhoberac BB, Garringer HJ, Hurley TD, Vidal R J Biol Chem. 2010 Jan 15;285(3):1950-6. Epub 2009 Nov 18. PMID:19923220[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Baraibar MA, Muhoberac BB, Garringer HJ, Hurley TD, Vidal R. Unraveling of the E-helices and disruption of 4-fold pores are associated with iron mishandling in a mutant ferritin causing neurodegeneration. J Biol Chem. 2010 Jan 15;285(3):1950-6. Epub 2009 Nov 18. PMID:19923220 doi:10.1074/jbc.M109.042986

4v6b, resolution 2.85Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA