4pqb
A sperm whale myoglobin double mutant L29E/F43H Mb with a non-native bis-His (His64/His93) coordinationA sperm whale myoglobin double mutant L29E/F43H Mb with a non-native bis-His (His64/His93) coordination
Structural highlights
FunctionMYG_PHYMC Serves as a reserve supply of oxygen and facilitates the movement of oxygen within muscles. Publication Abstract from PubMedHeme coordination state determines the functional diversity of heme proteins. Using myoglobin as a model protein, we designed a distal hydrogen-bonding network by introducing both distal glutamic acid (Glu29) and histidine (His43) residues and regulated the heme into a bis-His coordination state with native ligands His64 and His93. This resembles the heme site in natural bis-His coordinated heme proteins such as cytoglobin and neuroglobin. A single mutation of L29E or F43H was found to form a distinct hydrogen-bonding network involving distal water molecules, instead of the bis-His heme coordination, which highlights the importance of the combination of multiple hydrogen-bonding interactions to regulate the heme coordination state. Kinetic studies further revealed that direct coordination of distal His64 to the heme iron negatively regulates fluoride binding and hydrogen peroxide activation by competing with the exogenous ligands. The new approach developed in this study can be generally applicable for fine-tuning the structure and function of heme proteins. Regulating the coordination state of a heme protein by a designed distal hydrogen-bonding network.,Du JF, Li W, Li L, Wen GB, Lin YW, Tan X ChemistryOpen. 2015 Apr;4(2):97-101. doi: 10.1002/open.201402108. Epub 2014 Dec, 1. PMID:25969804[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|