Crystal Structure of the NMDA Receptor GluN1 Ligand Binding Domain Apo StateCrystal Structure of the NMDA Receptor GluN1 Ligand Binding Domain Apo State

Structural highlights

4kcc is a 1 chain structure with sequence from Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.894Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NMDZ1_RAT NMDA receptor subtype of glutamate-gated ion channels possesses high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. Plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. It mediates neuronal functions in glutamate neurotransmission. Is involved in the cell surface targeting of NMDA receptors.[1]

Publication Abstract from PubMed

The NMDA receptor family of glutamate receptor ion channels is formed by obligate heteromeric assemblies of GluN1, GluN2, and GluN3 subunits. GluN1 and GluN3 bind glycine, whereas GluN2 binds glutamate. Crystal structures of the GluN1 and GluN3A ligand-binding domains (LBDs) in their apo states unexpectedly reveal open- and closed-cleft conformations, respectively, with water molecules filling the binding pockets. Computed conformational free energy landscapes for GluN1, GluN2A, and GluN3A LBDs reveal that the apo-state LBDs sample closed-cleft conformations, suggesting that their agonists bind via a conformational selection mechanism. By contrast, free energy landscapes for the AMPA receptor GluA2 LBD suggest binding of glutamate via an induced-fit mechanism. Principal component analysis reveals a rich spectrum of hinge bending, rocking, twisting, and sweeping motions that are different for the GluN1, GluN2A, GluN3A, and GluA2 LBDs. This variation highlights the structural complexity of signaling by glutamate receptor ion channels.

Conformational Analysis of NMDA Receptor GluN1, GluN2, and GluN3 Ligand-Binding Domains Reveals Subtype-Specific Characteristics.,Yao Y, Belcher J, Berger AJ, Mayer ML, Lau AY Structure. 2013 Oct 8;21(10):1788-99. doi: 10.1016/j.str.2013.07.011. Epub 2013, Aug 22. PMID:23972471[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Inanobe A, Furukawa H, Gouaux E. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron. 2005 Jul 7;47(1):71-84. PMID:15996549 doi:10.1016/j.neuron.2005.05.022
  2. Yao Y, Belcher J, Berger AJ, Mayer ML, Lau AY. Conformational Analysis of NMDA Receptor GluN1, GluN2, and GluN3 Ligand-Binding Domains Reveals Subtype-Specific Characteristics. Structure. 2013 Oct 8;21(10):1788-99. doi: 10.1016/j.str.2013.07.011. Epub 2013, Aug 22. PMID:23972471 doi:http://dx.doi.org/10.1016/j.str.2013.07.011

4kcc, resolution 1.89Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA