Crystal structure of a putative FAD containing monooxygenase from Photorhabdus luminescens subsp. laumondii TTO1 (Target PSI-012791)Crystal structure of a putative FAD containing monooxygenase from Photorhabdus luminescens subsp. laumondii TTO1 (Target PSI-012791)

Structural highlights

4hb9 is a 1 chain structure with sequence from Photorhabdus laumondii subsp. laumondii TTO1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.93Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q7N4T1_PHOLL

Publication Abstract from PubMed

Members of the gammaproteobacterial Photorhabdus genus share mutualistic relationships with Heterorhabditis nematodes, and the pairs infect a wide swath of insect larvae. Photorhabdus species produce a family of stilbenes, with two major components being 3,5-dihydroxy-4-isopropyl-trans-stilbene (compound 1) and its stilbene epoxide (compound 2). This family of molecules harbors antimicrobial and immunosuppressive activities, and its pathway is responsible for producing a nematode "food signal" involved in nematode development. However, stilbene epoxidation biosynthesis and its biological roles remain unknown. Here, we identified an orphan protein (Plu2236) from Photorhabdus luminescens that catalyzes stilbene epoxidation. Structural, mutational, and biochemical analyses confirmed the enzyme adopts a fold common to FAD-dependent monooxygenases, contains a tightly bound FAD prosthetic group, and is required for the stereoselective epoxidation of compounds 1 and 2. The epoxidase gene was dispensable in a nematode-infective juvenile recovery assay, indicating the oxidized compound is not required for the food signal. The epoxide exhibited reduced cytotoxicity toward its producer, suggesting this may be a natural route for intracellular detoxification. In an insect infection model, we also observed two stilbene-derived metabolites that were dependent on the epoxidase. NMR, computational, and chemical degradation studies established their structures as new stilbene-l-proline conjugates, prolbenes A (compound 3) and B (compound 4). The prolbenes lacked immunosuppressive and antimicrobial activities compared with their stilbene substrates, suggesting a metabolite attenuation mechanism in the animal model. Collectively, our studies provide a structural view for stereoselective stilbene epoxidation and functionalization in an invertebrate animal infection model and provide new insights into stilbene cellular detoxification.

Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis.,Park HB, Sampathkumar P, Perez CE, Lee JH, Tran J, Bonanno JB, Hallem EA, Almo SC, Crawford JM J Biol Chem. 2017 Apr 21;292(16):6680-6694. doi: 10.1074/jbc.M116.762542. Epub , 2017 Feb 28. PMID:28246174[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Park HB, Sampathkumar P, Perez CE, Lee JH, Tran J, Bonanno JB, Hallem EA, Almo SC, Crawford JM. Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis. J Biol Chem. 2017 Apr 21;292(16):6680-6694. doi: 10.1074/jbc.M116.762542. Epub, 2017 Feb 28. PMID:28246174 doi:http://dx.doi.org/10.1074/jbc.M116.762542

4hb9, resolution 1.93Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA