Crystal structure of Staphylococcus aureus ClpP in compact conformationCrystal structure of Staphylococcus aureus ClpP in compact conformation

Structural highlights

4emm is a 14 chain structure with sequence from Staphylococcus aureus subsp. aureus MW2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CLPP_STAAW Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (By similarity).

Publication Abstract from PubMed

The ATP-dependent Clp protease (ClpP) plays an essential role not only in the control of protein quality but also in the regulation of bacterial pathogen virulence, making it an attractive target for antibacterial treatment. We have previously determined the crystal structures of Staphylococcus aureus ClpP (SaClpP) in two different states, extended and compressed. To investigate the dynamic switching of ClpP between these states, we performed a series of molecular dynamics simulations. During the structural transition, the long and straight helix E in the extended SaClpP monomer underwent an unfolding/refolding process, resulting in a kinked helix very similar to that in the compressed monomer. As a stable intermediate in the molecular dynamics simulation, the compact state was suggested and subsequently identified in x-ray crystallographic experiment. Our combined studies also determined that Ala(140) acted as a "hinge" during the transition between the extended and compressed states, and Glu(137) was essential for stabilizing the compressed state. Overall, this study provides molecular insights into the dynamics and mechanism of the functional conformation changes of SaClpP. Given the highly conserved sequences of ClpP proteins among different species, these findings potentially reflect a switching mechanism for the dynamic process shared in the whole ClpP family in general and thus aid in better understand the principles of Clp protease assembly and function.

Helix unfolding/refolding characterizes the functional dynamics of Staphylococcus aureus Clp protease.,Ye F, Zhang J, Liu H, Hilgenfeld R, Zhang R, Kong X, Li L, Lu J, Zhang X, Li D, Jiang H, Yang CG, Luo C J Biol Chem. 2013 Jun 14;288(24):17643-53. doi: 10.1074/jbc.M113.452714. Epub, 2013 Apr 26. PMID:23625918[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ye F, Zhang J, Liu H, Hilgenfeld R, Zhang R, Kong X, Li L, Lu J, Zhang X, Li D, Jiang H, Yang CG, Luo C. Helix unfolding/refolding characterizes the functional dynamics of Staphylococcus aureus Clp protease. J Biol Chem. 2013 Jun 14;288(24):17643-53. doi: 10.1074/jbc.M113.452714. Epub, 2013 Apr 26. PMID:23625918 doi:http://dx.doi.org/10.1074/jbc.M113.452714

4emm, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA