Crystal structure of the carboxy-terminal domain of yeast Ctf4 bound to Sld5Crystal structure of the carboxy-terminal domain of yeast Ctf4 bound to Sld5

Structural highlights

4c95 is a 5 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.694Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CTF4_YEAST Accessory factor for DNA replication. It plays a role in accurately duplicating the genome in vivo.

Publication Abstract from PubMed

Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase alpha (Pol alpha) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a beta-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol alpha and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol alpha and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol alpha and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol alpha to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.

A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome.,Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D, Labib K, Costa A, Pellegrini L Nature. 2014 May 4. doi: 10.1038/nature13234. PMID:24805245[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D, Labib K, Costa A, Pellegrini L. A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature. 2014 May 4. doi: 10.1038/nature13234. PMID:24805245 doi:http://dx.doi.org/10.1038/nature13234

4c95, resolution 2.69Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA