4c7t
Focal Adhesion Kinase catalytic domain in complex with a diarylamino- 1,3,5-triazine inhibitorFocal Adhesion Kinase catalytic domain in complex with a diarylamino- 1,3,5-triazine inhibitor
Structural highlights
FunctionFAK1_CHICK Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development, embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), ephrin receptors, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Regulates P53/TP53 activity and stability. Phosphorylates SRC; this increases SRC kinase activity. Isoform 2 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling.[1] [2] [3] [4] [5] [6] Publication Abstract from PubMedFAK and FGFR2 signaling pathways play important roles in cancer development, progression and tumor angiogenesis. PHM16 is a novel ATP competitive inhibitor of FAK and FGFR2. To evaluate the therapeutic efficacy of this agent, we examined its anti-angiogenic effect in HUVEC and its anti-tumor effect in different cancer cell lines. We showed PHM16 inhibited endothelial cell viability, adherence and tube formation along with the added ability to induce endothelial cell apoptosis. This compound significantly delayed tumor cell growth. Together, these data showed that inhibition of both FAK and FGFR2 signaling pathways can enhance anti-tumor and anti-angiogenic activities. Inhibition of both focal adhesion kinase and fibroblast growth factor receptor 2 pathways induces anti-tumor and anti-angiogenic activities.,Dao P, Jarray R, Smith N, Lepelletier Y, Coq JL, Lietha D, Hadj-Slimane R, Herbeuval JP, Garbay C, Raynaud F, Chen H Cancer Lett. 2014 Mar 19. pii: S0304-3835(14)00152-9. doi:, 10.1016/j.canlet.2014.03.007. PMID:24657306[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|