4brw
Crystal structure of the yeast Dhh1-Pat1 complexCrystal structure of the yeast Dhh1-Pat1 complex
Structural highlights
FunctionDHH1_YEAST ATP-dependent RNA helicase involved in mRNA turnover, and more specifically in mRNA decapping by activating the decapping enzyme DCP1. Is involved in G1/S DNA-damage checkpoint recovery, probably through the regulation of the translational status of a subset of mRNAs. May also have a role in translation and mRNA nuclear export. Required for sporulation.[1] [2] [3] [4] [5] [6] [7] [8] [9] Publication Abstract from PubMedTranslational repression and deadenylation of eukaryotic mRNAs result either in the sequestration of the transcripts in a nontranslatable pool or in their degradation. Removal of the 5' cap structure is a crucial step that commits deadenylated mRNAs to 5'-to-3' degradation. Pat1, Edc3 and the DEAD-box protein Dhh1 are evolutionary conserved factors known to participate in both translational repression and decapping, but their interplay is currently unclear. We report the 2.8 A resolution structure of yeast Dhh1 bound to the N-terminal domain of Pat1. The structure shows how Pat1 wraps around the C-terminal RecA domain of Dhh1, docking onto the Phe-Asp-Phe (FDF) binding site. The FDF-binding site of Dhh1 also recognizes Edc3, revealing why the binding of Pat1 and Edc3 on Dhh1 are mutually exclusive events. Using co-immunoprecipitation assays and structure-based mutants, we demonstrate that the mode of Dhh1-Pat1 recognition is conserved in humans. Pat1 and Edc3 also interfere and compete with the RNA-binding properties of Dhh1. Mapping the RNA-binding sites on Dhh1 with a crosslinking-mass spectrometry approach shows a large RNA-binding surface around the C-terminal RecA domain, including the FDF-binding pocket. The results suggest a model for how Dhh1-containing messenger ribonucleoprotein particles might be remodeled upon Pat1 and Edc3 binding. Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions.,Sharif H, Ozgur S, Sharma K, Basquin C, Urlaub H, Conti E Nucleic Acids Res. 2013 Jul 12. PMID:23851565[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|