STRUCTURAL BASIS FOR THE CONFORMATIONAL MODULATIONSTRUCTURAL BASIS FOR THE CONFORMATIONAL MODULATION

Structural highlights

4a5t is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.49Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PLMN_HUMAN Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:217090. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.[1] [2] [3] [4] [5] [6] [7] [8]

Function

PLMN_HUMAN Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.[9] Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.[10]

Publication Abstract from PubMed

Background: Plasminogen is the zymogen form of plasmin and the precursor of angiostatin, it has been implicated in a variety of disease states including thrombosis, bleeding and cancers. The native plasminogen, known as Glu-plasminogen, contains seven domains comprising the N-terminal peptide domain (NTP), five kringle domains (K1-K5) and the C-terminal serine protease domain (SP). Previous studies have established that the lysine binding site (LBS) of the conserved kringle domains plays a crucial role in mediating the regulation of plasminogen function. However, details of the related conformational mechanism are unknown. Objectives: We aim to understand in more detail the conformational mechanism of plasminogen activation involving the kringles. Methods: We crystallized the native plasminogen under physiologically relevant conditions and determined the structure at 3.5 A resolution. We performed structural analyses and related to the literature data to gain critical understanding of the plasminogen activation. Results and conclusions: The structure reveals the precise architecture of the quaternary complex. It shows that the Glu-plasminogen renders its compact form as an activation-resistant conformation for the proteolytic activation. The LBSs of all kringles, except K1, are engaged in intra-molecular interactions while only K1-LBS is readily available for ligand binding or receptor anchorage. The structure also provides insights into the interactions between plasminogen and alpha2-antiplasmin, the primary physiological inhibitor of plasmin. Furthermore the data represented explains why a conformational transition to the open form is necessary for plasminogen activation as well as angiostatin generation, and provides a rationale for the functional hierarchy of the different kringles. (c) 2012 International Society on Thrombosis and Haemostasis.

Crystal structure of the native plasminogen reveals an activation-resistant compact conformation.,Xue Y, Bodin C, Olsson K J Thromb Haemost. 2012 Apr 28. doi: 10.1111/j.1538-7836.2012.04765.x. PMID:22540246[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ichinose A, Espling ES, Takamatsu J, Saito H, Shinmyozu K, Maruyama I, Petersen TE, Davie EW. Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):115-9. PMID:1986355
  2. Azuma H, Uno Y, Shigekiyo T, Saito S. Congenital plasminogen deficiency caused by a Ser572 to Pro mutation. Blood. 1993 Jul 15;82(2):475-80. PMID:8392398
  3. Miyata T, Iwanaga S, Sakata Y, Aoki N. Plasminogen Tochigi: inactive plasmin resulting from replacement of alanine-600 by threonine in the active site. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6132-6. PMID:6216475
  4. Miyata T, Iwanaga S, Sakata Y, Aoki N, Takamatsu J, Kamiya T. Plasminogens Tochigi II and Nagoya: two additional molecular defects with Ala-600----Thr replacement found in plasmin light chain variants. J Biochem. 1984 Aug;96(2):277-87. PMID:6238949
  5. Kikuchi S, Yamanouchi Y, Li L, Kobayashi K, Ijima H, Miyazaki R, Tsuchiya S, Hamaguchi H. Plasminogen with type-I mutation is polymorphic in the Japanese population. Hum Genet. 1992 Sep-Oct;90(1-2):7-11. PMID:1427790
  6. Schuster V, Mingers AM, Seidenspinner S, Nussgens Z, Pukrop T, Kreth HW. Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood. 1997 Aug 1;90(3):958-66. PMID:9242524
  7. Higuchi Y, Furihata K, Ueno I, Ishikawa S, Okumura N, Tozuka M, Sakurai N. Plasminogen Kanagawa-I, a novel missense mutation, is caused by the amino acid substitution G732R. Br J Haematol. 1998 Dec;103(3):867-70. PMID:9858247
  8. Schuster V, Seidenspinner S, Zeitler P, Escher C, Pleyer U, Bernauer W, Stiehm ER, Isenberg S, Seregard S, Olsson T, Mingers AM, Schambeck C, Kreth HW. Compound-heterozygous mutations in the plasminogen gene predispose to the development of ligneous conjunctivitis. Blood. 1999 May 15;93(10):3457-66. PMID:10233898
  9. Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004 Mar 12;279(11):10346-56. Epub 2003 Dec 29. PMID:14699093 doi:10.1074/jbc.M310964200
  10. Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004 Mar 12;279(11):10346-56. Epub 2003 Dec 29. PMID:14699093 doi:10.1074/jbc.M310964200
  11. Xue Y, Bodin C, Olsson K. Crystal structure of the native plasminogen reveals an activation-resistant compact conformation. J Thromb Haemost. 2012 Apr 28. doi: 10.1111/j.1538-7836.2012.04765.x. PMID:22540246 doi:10.1111/j.1538-7836.2012.04765.x

4a5t, resolution 3.49Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA