Crystal structure of the high-affinity abscisic acid receptor PYL9/RCAR9 bound to ABACrystal structure of the high-affinity abscisic acid receptor PYL9/RCAR9 bound to ABA

Structural highlights

3w9r is a 1 chain structure with sequence from Arabidopsis thaliana. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PYL9_ARATH Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA. Confers enhanced sensitivity to ABA.[1]

Publication Abstract from PubMed

Arabidopsis receptors of abscisic acid (ABA), the key plant hormone for adaptation to water stress, comprise 14 PYR/PYLs/RCARs proteins classified into three subfamilies I, II, and III, which suggests functional differentiation. Although their monomer-dimer equilibria may be correlated with differences in their ABA-binding affinities, how the dimerization decreases the affinity is unclear. Comparative structural and binding studies between PYL9, which is a representative of high-affinity subfamily I, and low-affinity members of subfamily III reveals that the nonpolar triplet (Ile110, Val162, and Leu165) and Pro64 contribute to enhance ABA-binding affinity by inducing a shift of the ABA carboxyl group to form additional direct hydrogen bonds with conserved Asn169. Our mutation studies of PYL1 successfully produced a monomeric mutant PYL1 exhibiting low ABA affinity and also a dimeric mutant PYL1 exhibiting high ABA-binding affinity, suggesting that dimer formation of ABA receptors is not essential for their low ABA-binding affinity. Our study contributes toward establishing the structural basis for the higher ABA-binding affinity of the subfamily receptors and provides a clue for understanding the broad spectrum of hormone actions in plants manifested by the different hormone-binding affinity of multiple receptors.

Mechanism of high-affinity abscisic acid binding to PYL9/RCAR1.,Nakagawa M, Kagiyama M, Shibata N, Hirano Y, Hakoshima T Genes Cells. 2014 Mar 19. doi: 10.1111/gtc.12140. PMID:24645846[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009 May 22;324(5930):1064-8. doi: 10.1126/science.1172408. Epub 2009, Apr 30. PMID:19407143 doi:10.1126/science.1172408
  2. Nakagawa M, Kagiyama M, Shibata N, Hirano Y, Hakoshima T. Mechanism of high-affinity abscisic acid binding to PYL9/RCAR1. Genes Cells. 2014 Mar 19. doi: 10.1111/gtc.12140. PMID:24645846 doi:http://dx.doi.org/10.1111/gtc.12140

3w9r, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA