DNA Polymerase beta mutant 5P20 complexed with 6bp of DNADNA Polymerase beta mutant 5P20 complexed with 6bp of DNA

Structural highlights

3ogu is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.845Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DPOLB_HUMAN Repair polymerase that plays a key role in base-excision repair. Has 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity that removes the 5' sugar phosphate and also acts as a DNA polymerase that adds one nucleotide to the 3' end of the arising single-nucleotide gap. Conducts 'gap-filling' DNA synthesis in a stepwise distributive fashion rather than in a processive fashion as for other DNA polymerases.[1] [2] [3] [4]

Publication Abstract from PubMed

The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase beta when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase beta was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase beta and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase beta variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights.

Human DNA polymerase beta mutations allowing efficient abasic site bypass.,Gieseking S, Bergen K, Di Pasquale F, Diederichs K, Welte W, Marx A J Biol Chem. 2011 Feb 4;286(5):4011-20. Epub 2010 Nov 24. PMID:21107011[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bennett RA, Wilson DM 3rd, Wong D, Demple B. Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7166-9. PMID:9207062
  2. Matsumoto Y, Kim K, Katz DS, Feng JA. Catalytic center of DNA polymerase beta for excision of deoxyribose phosphate groups. Biochemistry. 1998 May 5;37(18):6456-64. PMID:9572863 doi:10.1021/bi9727545
  3. DeMott MS, Beyret E, Wong D, Bales BC, Hwang JT, Greenberg MM, Demple B. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone. J Biol Chem. 2002 Mar 8;277(10):7637-40. Epub 2002 Jan 22. PMID:11805079 doi:10.1074/jbc.C100577200
  4. Parsons JL, Dianova II, Khoronenkova SV, Edelmann MJ, Kessler BM, Dianov GL. USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta. Mol Cell. 2011 Mar 4;41(5):609-15. doi: 10.1016/j.molcel.2011.02.016. PMID:21362556 doi:10.1016/j.molcel.2011.02.016
  5. Gieseking S, Bergen K, Di Pasquale F, Diederichs K, Welte W, Marx A. Human DNA polymerase beta mutations allowing efficient abasic site bypass. J Biol Chem. 2011 Feb 4;286(5):4011-20. Epub 2010 Nov 24. PMID:21107011 doi:10.1074/jbc.M110.176826

3ogu, resolution 1.84Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA