A domain insertion in E. coli GyrB adopts a novel fold that plays a critical role in gyrase functionA domain insertion in E. coli GyrB adopts a novel fold that plays a critical role in gyrase function

Structural highlights

3nuh is a 2 chain structure with sequence from Escherichia coli K-12. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.103Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GYRA_ECOLI DNA gyrase negatively supercoils closed circular double-stranded DNA in an ATP-dependent manner and also catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes and knotted rings.[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

DNA topoisomerases manage chromosome supercoiling and organization in all forms of life. Gyrase, a prokaryotic heterotetrameric type IIA topo, introduces negative supercoils into DNA by an ATP-dependent strand passage mechanism. All gyrase orthologs rely on a homologous set of catalytic domains for function; however, these enzymes also can possess species-specific auxiliary regions. The gyrases of many gram-negative bacteria harbor a 170-amino acid insertion of unknown architecture and function in the metal- and DNA-binding TOPRIM domain of the GyrB subunit. We have determined the structure of the 212 kDa Escherichia coli gyrase DNA binding and cleavage core containing this insert to 3.1 A resolution. We find that the insert adopts a novel, extended fold that braces the GyrB TOPRIM domain against the coiled-coil arms of its partner GyrA subunit. Structure-guided deletion of the insert greatly reduces the DNA binding, supercoiling and DNA-stimulated ATPase activities of gyrase. Mutation of a single amino acid at the contact point between the insert and GyrA more modestly impairs supercoiling and ATP turnover, and does not affect DNA binding. Our data indicate that the insert has two functions, acting as a steric buttress to pre-configure the primary DNA-binding site, and serving as a relay that may help coordinate communication between different functional domains.

A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function.,Schoeffler AJ, May AP, Berger JM Nucleic Acids Res. 2010 Jul 31. PMID:20675723[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hockings SC, Maxwell A. Identification of four GyrA residues involved in the DNA breakage-reunion reaction of DNA gyrase. J Mol Biol. 2002 Apr 26;318(2):351-9. PMID:12051842 doi:http://dx.doi.org/10.1016/S0022-2836(02)00048-7
  2. Sissi C, Chemello A, Vazquez E, Mitchenall LA, Maxwell A, Palumbo M. DNA gyrase requires DNA for effective two-site coordination of divalent metal ions: further insight into the mechanism of enzyme action. Biochemistry. 2008 Aug 19;47(33):8538-45. doi: 10.1021/bi800480j. Epub 2008 Jul, 22. PMID:18642932 doi:http://dx.doi.org/10.1021/bi800480j
  3. Edwards MJ, Flatman RH, Mitchenall LA, Stevenson CE, Le TB, Clarke TA, McKay AR, Fiedler HP, Buttner MJ, Lawson DM, Maxwell A. A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase. Science. 2009 Dec 4;326(5958):1415-8. PMID:19965760 doi:326/5958/1415
  4. Schoeffler AJ, May AP, Berger JM. A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function. Nucleic Acids Res. 2010 Jul 31. PMID:20675723 doi:10.1093/nar/gkq665

3nuh, resolution 3.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA