Crystal structure of S. typhimurium H-NS 1-83Crystal structure of S. typhimurium H-NS 1-83

Structural highlights

3nr7 is a 2 chain structure with sequence from Salmonella enterica subsp. enterica serovar Typhimurium. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.7Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HNS_SALTY H-NS binds tightly to ds-DNA, increases its thermal stability and inhibits transcription. It also binds to ss-DNA and RNA but with a much lower affinity. H-NS has possible histone-like function. May be a global transcriptional regulator through its ability to bind to curved DNA sequences, which are found in regions upstream of a certain subset of promoters. It plays a role in the thermal control of pili production. It is subject to transcriptional auto-repression. It binds preferentially to the upstream region of its own gene recognizing two segments of DNA on both sides of a bend centered around -150 (By similarity).

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The histone-like nucleoid structuring (H-NS) protein plays a fundamental role in DNA condensation and is a key regulator of enterobacterial gene expression in response to changes in osmolarity, pH, and temperature. The protein is capable of high-order self-association via interactions of its oligomerization domain. Using crystallography, we have solved the structure of this complete domain in an oligomerized state. The observed superhelical structure establishes a mechanism for the self-association of H-NS via both an N-terminal antiparallel coiled-coil and a second, hitherto unidentified, helix-turn-helix dimerization interface at the C-terminal end of the oligomerization domain. The helical scaffold suggests the formation of a H-NS:plectonemic DNA nucleoprotein complex that is capable of explaining published biophysical and functional data, and establishes a unifying structural basis for coordinating the DNA packaging and transcription repression functions of H-NS.

H-NS forms a superhelical protein scaffold for DNA condensation.,Arold ST, Leonard PG, Parkinson GN, Ladbury JE Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15728-32. Epub 2010 Aug 23. PMID:20798056[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Arold ST, Leonard PG, Parkinson GN, Ladbury JE. H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15728-32. Epub 2010 Aug 23. PMID:20798056 doi:10.1073/pnas.1006966107

3nr7, resolution 3.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA