Crystal Structure of Mycobacterium Tuberculosis Proteasome open-gate mutant with H0 movementCrystal Structure of Mycobacterium Tuberculosis Proteasome open-gate mutant with H0 movement

Structural highlights

3mfe is a 28 chain structure with sequence from Mycobacterium tuberculosis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PSB_MYCTU Component of the proteasome core, a large protease complex with broad specificity involved in protein degradation. The M.tuberculosis proteasome is able to cleave oligopeptides not only after hydrophobic but also after basic, acidic and small neutral residues. Among the identified substrates of the M.tuberculosis proteasome are the pupylated FabD, PanB and Mpa proteins. One function of the proteasome is to contribute to M.tuberculosis ability to resist killing by host macrophages, since the core proteasome is essential for persistence of the pathogen during the chronic phase of infection in mice. The mechanism of protection against bactericidal chemistries of the host's immune response probably involves the degradation of proteins that are irreversibly oxidized, nitrated, or nitrosated.[1] [2]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the beta-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven alpha-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome.,Li D, Li H, Wang T, Pan H, Lin G, Li H EMBO J. 2010 Jun 16;29(12):2037-47. Epub 2010 May 11. PMID:20461058[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lin G, Hu G, Tsu C, Kunes YZ, Li H, Dick L, Parsons T, Li P, Chen Z, Zwickl P, Weich N, Nathan C. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol Microbiol. 2006 Mar;59(5):1405-16. PMID:16468985 doi:http://dx.doi.org/10.1111/j.1365-2958.2005.05035.x
  2. Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med. 2007 Dec;13(12):1515-20. Epub 2007 Dec 2. PMID:18059281 doi:http://dx.doi.org/10.1038/nm1683
  3. Li D, Li H, Wang T, Pan H, Lin G, Li H. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO J. 2010 Jun 16;29(12):2037-47. Epub 2010 May 11. PMID:20461058 doi:10.1038/emboj.2010.95

3mfe, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA