Crystal structure of a secreted Mycobacterium tuberculosis heme-binding proteinCrystal structure of a secreted Mycobacterium tuberculosis heme-binding protein

Structural highlights

3may is a 8 chain structure with sequence from Mycobacterium tuberculosis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

O53654_MYCTO

Publication Abstract from PubMed

Mycobacterium tuberculosis must import iron from its host for survival, and its siderophore-dependent iron acquisition pathways are well established. Here we demonstrate a newly characterized pathway, whereby M. tuberculosis can use free heme and heme from hemoglobin as an iron source. Significantly, we identified the genomic region, Rv0202c-Rv0207c, responsible for the passage of heme iron across the mycobacterial membrane. Key players of this heme uptake system were characterized including a secreted protein and two transmembrane proteins, all three specific to mycobacteria. Furthermore, the crystal structure of the key heme carrier protein Rv0203 was found to have a unique fold. The discovery of a unique mycobacterial heme acquisition pathway opens new avenues of exploration into mycobacterial therapeutics.

Discovery and characterization of a unique mycobacterial heme acquisition system.,Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, McMath LM, Iniguez A, Kimmey JM, Sawaya MR, Whitelegge JP, Horwitz MA, Goulding CW Proc Natl Acad Sci U S A. 2011 Mar 7. PMID:21383189[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, McMath LM, Iniguez A, Kimmey JM, Sawaya MR, Whitelegge JP, Horwitz MA, Goulding CW. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A. 2011 Mar 7. PMID:21383189 doi:10.1073/pnas.1009516108

3may, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA