Crystal structure of the S. solfataricus archaeal exosomeCrystal structure of the S. solfataricus archaeal exosome

Structural highlights

3l7z is a 9 chain structure with sequence from Saccharolobus solfataricus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.41Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RRP42_SACS2 Non-catalytic component of the exosome, which is a complex involved in RNA degradation. Contributes to the structuring of the Rrp41 active site.[HAMAP-Rule:MF_00622][1] [2]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: The exosome complex is an essential RNA 3'-end processing and degradation machinery. In archaeal organisms, the exosome consists of a catalytic ring and an RNA-binding ring, both of which were previously reported to assume three-fold symmetry. METHODOLOGY/PRINCIPAL FINDINGS: Here we report an asymmetric 2.9 A Sulfolobus solfataricus archaeal exosome structure in which the three-fold symmetry is broken due to combined rigid body and thermal motions mainly within the RNA-binding ring. Since increased conformational flexibility was also observed in the RNA-binding ring of the related bacterial PNPase, we speculate that this may reflect an evolutionarily conserved mechanism to accommodate diverse RNA substrates for degradation. CONCLUSION/SIGNIFICANCE: This study clearly shows the dynamic structures within the RNA-binding domains, which provides additional insights on mechanism of asymmetric RNA binding and processing.

Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring.,Lu C, Ding F, Ke A PLoS One. 2010 Jan 15;5(1):e8739. PMID:20090900[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol. 2005 Jul;12(7):575-81. Epub 2005 Jun 12. PMID:15951817 doi:10.1038/nsmb952
  2. Roppelt V, Klug G, Evguenieva-Hackenberg E. The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome. FEBS Lett. 2010 Jul 2;584(13):2931-6. PMID:20488184 doi:10.1016/j.febslet.2010.05.014
  3. Lu C, Ding F, Ke A. Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring. PLoS One. 2010 Jan 15;5(1):e8739. PMID:20090900 doi:10.1371/journal.pone.0008739

3l7z, resolution 2.41Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA