Human mesotrypsin complexed with amyloid precursor protein inhibitor(APPI)Human mesotrypsin complexed with amyloid precursor protein inhibitor(APPI)

Structural highlights

3l33 is a 8 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.48Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TRY3_HUMAN Digestive protease specialized for the degradation of trypsin inhibitors. In the ileum, may be involved in defensin processing, including DEFA5.[1] [2]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P(1) (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'(2) favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P(1) and P'(2) substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin.APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.

Determinants of affinity and proteolytic stability in interactions of Kunitz family protease inhibitors with mesotrypsin.,Salameh MA, Soares AS, Navaneetham D, Sinha D, Walsh PN, Radisky ES J Biol Chem. 2010 Nov 19;285(47):36884-96. Epub 2010 Sep 22. PMID:20861008[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol. 2002 Jun;3(6):583-90. Epub 2002 May 20. PMID:12021776 doi:10.1038/ni797
  2. Szmola R, Kukor Z, Sahin-Toth M. Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors. J Biol Chem. 2003 Dec 5;278(49):48580-9. Epub 2003 Sep 24. PMID:14507909 doi:10.1074/jbc.M310301200
  3. Salameh MA, Soares AS, Navaneetham D, Sinha D, Walsh PN, Radisky ES. Determinants of affinity and proteolytic stability in interactions of Kunitz family protease inhibitors with mesotrypsin. J Biol Chem. 2010 Nov 19;285(47):36884-96. Epub 2010 Sep 22. PMID:20861008 doi:10.1074/jbc.M110.171348

3l33, resolution 2.48Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA