Structure of the C-terminal Sec63 unit of yeast Brr2, P41212 FormStructure of the C-terminal Sec63 unit of yeast Brr2, P41212 Form

Structural highlights

3im2 is a 1 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.99Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BRR2_YEAST RNA helicase that plays an essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes. Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome.[1] [2] [3] [4]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Brr2 is a unique DExD/H box protein required for catalytic activation and disassembly of the spliceosome. It contains two tandem helicase cassettes that both comprise dual RecA-like domains and a noncanonical Sec63 unit. The latter may bestow the enzyme with unique properties. We have determined crystal structures of the C-terminal Sec63 unit of yeast Brr2, revealing three domains, two of which resemble functional modules of a DNA helicase, Hel308, despite lacking significant sequence similarity. This structural similarity together with sequence conservation between the enzymes throughout the RecA-like domains and a winged helix domain allowed us to devise a structural model of the N-terminal active cassette of Brr2. We consolidated the model by rational mutagenesis combined with splicing and U4/U6 di-snRNA unwinding assays, highlighting how the RecA-like domains and the Sec63 unit form a functional entity that appears suitable for unidirectional and processive RNA duplex unwinding during spliceosome activation and disassembly.

Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase.,Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Luhrmann R, Wahl MC Mol Cell. 2009 Aug 28;35(4):454-66. PMID:19716790[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Maeder C, Kutach AK, Guthrie C. ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct Mol Biol. 2009 Jan;16(1):42-8. doi: 10.1038/nsmb.1535. Epub 2008 Dec, 21. PMID:19098916 doi:http://dx.doi.org/10.1038/nsmb.1535
  2. Hahn D, Kudla G, Tollervey D, Beggs JD. Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev. 2012 Nov 1;26(21):2408-21. doi: 10.1101/gad.199307.112. PMID:23124065 doi:http://dx.doi.org/10.1101/gad.199307.112
  3. Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Luhrmann R, Wahl MC. Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell. 2009 Aug 28;35(4):454-66. PMID:19716790 doi:10.1016/j.molcel.2009.08.006
  4. Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
  5. Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Luhrmann R, Wahl MC. Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell. 2009 Aug 28;35(4):454-66. PMID:19716790 doi:10.1016/j.molcel.2009.08.006

3im2, resolution 1.99Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA