Analysis of the Structural Determinants Underlying Discrimination between Substrate and Solvent in beta-Phosphoglucomutase CatalysisAnalysis of the Structural Determinants Underlying Discrimination between Substrate and Solvent in beta-Phosphoglucomutase Catalysis

Structural highlights

3fm9 is a 1 chain structure with sequence from Lactococcus lactis subsp. lactis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PGMB_LACLA Catalyzes the interconversion of D-glucose 1-phosphate (G1P) and D-glucose 6-phosphate (G6P), forming beta-D-glucose 1,6-(bis)phosphate (beta-G16P) as an intermediate. The beta-phosphoglucomutase (Beta-PGM) acts on the beta-C(1) anomer of G1P. Glucose or lactose are used in preference to maltose, which is only utilized after glucose or lactose has been exhausted. It plays a key role in the regulation of the flow of carbohydrate intermediates in glycolysis and the formation of the sugar nucleotide UDP-glucose.[1] [2]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Tauhe beta-phosphoglucomutase (beta-PGM) of the haloacid dehalogenase enzyme superfamily (HADSF) catalyzes the conversion of beta-glucose 1-phosphate (betaG1P) to glucose 6-phosphate (G6P) using Asp8 of the core domain active site to mediate phosphoryl transfer from beta-glucose 1,6-(bis)phosphate (betaG1,6bisP) to betaG1P. Herein, we explore the mechanism by which hydrolysis of the beta-PGM phospho-Asp8 is avoided during the time that the active site must remain open to solvent to allow the exchange of the bound product G6P with the substrate betaG1P. On the basis of structural information, a model of catalysis is proposed in which the general acid/base (Asp10) side chain moves from a position where it forms a hydrogen bond to the Thr16-Ala17 portion of the domain-domain linker to a functional position where it forms a hydrogen bond to the substrate leaving group O and a His20-Lys76 pair of the cap domain. This repositioning of the general acid/base within the core domain active site is coordinated with substrate-induced closure of the cap domain over the core domain. The model predicts that Asp10 is required for general acid/base catalysis and for stabilization of the enzyme in the cap-closed conformation. It also predicts that hinge residue Thr16 plays a key role in productive domain-domain association, that hydrogen bond interaction with the Thr16 backbone amide NH group is required to prevent phospho-Asp8 hydrolysis in the cap-open conformation, and that the His20-Lys76 pair plays an important role in substrate-induced cap closure. The model is examined via kinetic analyses of Asp10, Thr16, His20, and Lys76 site-directed mutants. Replacement of Asp10 with Ala, Ser, Cys, Asn, or Glu resulted in no observable activity. The kinetic consequences of the replacement of linker residue Thr16 with Pro include a reduced rate of Asp8 phosphorylation by betaG1,6bisP, a reduced rate of cycling of the phosphorylated enzyme to convert betaG1P to G6P, and an enhanced rate of phosphoryl transfer from phospho-Asp8 to water. The X-ray crystal structure of the T16P mutant at 2.7 A resolution provides a snapshot of the enzyme in an unnatural cap-open conformation where the Asp10 side chain is located in the core domain active site. The His20 and Lys76 site-directed mutants exhibit reduced activity in catalysis of the Asp8-mediated phosphoryl transfer between betaG1,6bisP and betaG1P but no reduction in the rate of phospho-Asp8 hydrolysis. Taken together, the results support a substrate induced-fit model of catalysis in which betaG1P binding to the core domain facilitates recruitment of the general acid/base Asp10 to the catalytic site and induces cap closure.

Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.,Dai J, Finci L, Zhang C, Lahiri S, Zhang G, Peisach E, Allen KN, Dunaway-Mariano D Biochemistry. 2009 Mar 10;48(9):1984-95. PMID:19154134[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Qian N, Stanley GA, Bunte A, Radstrom P. Product formation and phosphoglucomutase activities in Lactococcus lactis: cloning and characterization of a novel phosphoglucomutase gene. Microbiology. 1997 Mar;143 ( Pt 3):855-65. PMID:9084169
  2. Lahiri SD, Zhang G, Dai J, Dunaway-Mariano D, Allen KN. Analysis of the substrate specificity loop of the HAD superfamily cap domain. Biochemistry. 2004 Mar 16;43(10):2812-20. PMID:15005616 doi:10.1021/bi0356810
  3. Dai J, Finci L, Zhang C, Lahiri S, Zhang G, Peisach E, Allen KN, Dunaway-Mariano D. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis. Biochemistry. 2009 Mar 10;48(9):1984-95. PMID:19154134 doi:10.1021/bi801653r

3fm9, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA