3fk3
Structure of the Yeats Domain, Yaf9Structure of the Yeats Domain, Yaf9
Structural highlights
FunctionAF9_YEAST Component of the SWR1 complex which mediates the ATP-dependent exchange of histone H2A for the H2A variant HZT1 leading to transcriptional regulation of selected genes by chromatin remodeling. Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of selected genes principally by acetylation of nucleosomal histones H4 and H2A. The NuA4 complex is also involved in DNA repair. Yaf9 may also be required for viability in conditions in which the structural integrity of the spindle is compromised.[1] [2] [3] [4] [5] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedChromatin can be modified by posttranslational modifications of histones, ATP-dependent remodeling, and incorporation of histone variants. The Saccharomyces cerevisiae protein Yaf9 is a subunit of both the essential histone acetyltransferase complex NuA4 and the ATP-dependent chromatin remodeling complex SWR1-C, which deposits histone variant H2A.Z into euchromatin. Yaf9 contains a YEATS domain, found in proteins associated with multiple chromatin-modifying enzymes and transcription complexes across eukaryotes. Here, we established the conservation of YEATS domain function from yeast to human, and determined the structure of this region from Yaf9 by x-ray crystallography to 2.3 A resolution. The Yaf9 YEATS domain consisted of a beta-sandwich characteristic of the Ig fold and contained three distinct conserved structural features. The structure of the Yaf9 YEATS domain was highly similar to that of the histone chaperone Asf1, a similarity that extended to an ability of Yaf9 to bind histones H3 and H4 in vitro. Using structure-function analysis, we found that the YEATS domain was required for Yaf9 function, histone variant H2A.Z chromatin deposition at specific promoters, and H2A.Z acetylation. Asf1-like structure of the conserved Yaf9 YEATS domain and role in H2A.Z deposition and acetylation.,Wang AY, Schulze JM, Skordalakes E, Gin JW, Berger JM, Rine J, Kobor MS Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21573-8. Epub 2009 Dec 4. PMID:19966225[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|