3fi2
Crystal structure of JNK3 with amino-pyrazole inhibitor, SR-3451Crystal structure of JNK3 with amino-pyrazole inhibitor, SR-3451
Structural highlights
DiseaseMK10_HUMAN Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:606369. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation. FunctionMK10_HUMAN Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.[1] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedc-Jun N-terminal kinase 3alpha1 (JNK3alpha1) is a mitogen-activated protein kinase family member expressed primarily in the brain that phosphorylates protein transcription factors, including c-Jun and activating transcription factor-2 (ATF-2) upon activation by a variety of stress-based stimuli. In this study, we set out to design JNK3-selective inhibitors that had >1000-fold selectivity over p38, another closely related mitogen-activated protein kinase family member. To do this we employed traditional medicinal chemistry principles coupled with structure-based drug design. Inhibitors from the aminopyrazole class, such as SR-3576, were found to be very potent JNK3 inhibitors (IC(50) = 7 nm) with >2800-fold selectivity over p38 (p38 IC(50) > 20 microm) and had cell-based potency of approximately 1 microm. In contrast, indazole-based inhibitors exemplified by SR-3737 were potent inhibitors of both JNK3 (IC(50) = 12 nm) and p38 (IC(50) = 3 nm). These selectivity differences between the indazole class and the aminopyrazole class came despite nearly identical binding (root mean square deviation = 0.33 A) of these two compound classes to JNK3. The structural features within the compounds giving rise to the selectivity in the aminopyrazole class include the highly planar nature of the pyrazole, N-linked phenyl structures, which better occupied the smaller active site of JNK3 compared with the larger active site of p38. Structure-activity relationships and X-ray structures describing the selectivity of aminopyrazole inhibitors for c-Jun N-terminal kinase 3 (JNK3) over p38.,Kamenecka T, Habel J, Duckett D, Chen W, Ling YY, Frackowiak B, Jiang R, Shin Y, Song X, LoGrasso P J Biol Chem. 2009 May 8;284(19):12853-61. Epub 2009 Mar 4. PMID:19261605[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|