X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) complexed with a potent inhibitor RDEA119 and MgATPX-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) complexed with a potent inhibitor RDEA119 and MgATP

Structural highlights

3e8n is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MP2K1_HUMAN Defects in MAP2K1 are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:115150; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant.

Function

MP2K1_HUMAN Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis.[1] [2]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The RAS-RAF-mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway provides numerous opportunities for targeted oncology therapeutics. In particular, the MEK enzyme is attractive due to high selectivity for its target ERK and the central role that activated ERK plays in driving cell proliferation. The structural, pharmacologic, and pharmacokinetic properties of RDEA119/BAY 869766, an allosteric MEK inhibitor, are presented. RDEA119/BAY 869766 is selectively bound directly to an allosteric pocket in the MEK1/2 enzymes. This compound is highly efficacious at inhibiting cell proliferation in several tumor cell lines in vitro. In vivo, RDEA119/BAY 869766 exhibits potent activity in xenograft models of melanoma, colon, and epidermal carcinoma. RDEA119/BAY 869766 exhibits complete suppression of ERK phosphorylation at fully efficacious doses in mice. RDEA119/BAY 869766 shows a tissue selectivity that reduces its potential for central nervous system-related side effects. Using pharmacokinetic and pharmacodynamic data, we show that maintaining adequate MEK inhibition throughout the dosing interval is likely more important than achieving high peak levels because greater efficacy was achieved with more frequent but lower dosing. Based on its longer half-life in humans than in mice, RDEA119/BAY 869766 has the potential for use as a once- or twice-daily oral treatment for cancer. RDEA119/BAY 869766, an exquisitely selective, orally available MEK inhibitor, has been selected for clinical development because of its potency and favorable pharmacokinetic profile.

RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer.,Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier JM, Hamatake R, Miner JN, Quart B Cancer Res. 2009 Sep 1;69(17):6839-47. Epub 2009 Aug 25. PMID:19706763[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Liu X, Yan S, Zhou T, Terada Y, Erikson RL. The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene. 2004 Jan 22;23(3):763-76. PMID:14737111 doi:10.1038/sj.onc.1207188
  2. Burgermeister E, Chuderland D, Hanoch T, Meyer M, Liscovitch M, Seger R. Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 2007 Feb;27(3):803-17. Epub 2006 Nov 13. PMID:17101779 doi:10.1128/MCB.00601-06
  3. Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier JM, Hamatake R, Miner JN, Quart B. RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 2009 Sep 1;69(17):6839-47. Epub 2009 Aug 25. PMID:19706763 doi:10.1158/0008-5472.CAN-09-0679

3e8n, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA