Crystal structure of a rabbit muscle fructose-1,6-bisphosphate aldolase A dimer variantCrystal structure of a rabbit muscle fructose-1,6-bisphosphate aldolase A dimer variant

Structural highlights

3bv4 is a 1 chain structure with sequence from Oryctolagus cuniculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.7Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ALDOA_RABIT Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Fructose-1,6-bisphosphate aldolase (aldolase) is an essential enzyme in glycolysis and gluconeogenesis. In addition to this primary function, aldolase is also known to bind to a variety of other proteins, a property that may allow it to perform 'moonlighting' roles in the cell. Although monomeric and dimeric aldolases possess full catalytic activity, the enzyme occurs as an unusually stable tetramer, suggesting a possible link between the oligomeric state and these noncatalytic cellular roles. Here, the first high-resolution X-ray crystal structure of rabbit muscle D128V aldolase, a dimeric form of aldolase mimicking the clinically important D128G mutation in humans associated with hemolytic anemia, is presented. The structure of the dimer was determined to 1.7 angstroms resolution with the product DHAP bound in the active site. The turnover of substrate to produce the product ligand demonstrates the retention of catalytic activity by the dimeric aldolase. The D128V mutation causes aldolase to lose intermolecular contacts with the neighboring subunit at one of the two interfaces of the tetramer. The tertiary structure of the dimer does not significantly differ from the structure of half of the tetramer. Analytical ultracentrifugation confirms the occurrence of the enzyme as a dimer in solution. The highly stable structure of aldolase with an independent active site is consistent with a model in which aldolase has evolved as a multimeric scaffold to perform other noncatalytic functions.

Structure of a rabbit muscle fructose-1,6-bisphosphate aldolase A dimer variant.,Sherawat M, Tolan DR, Allen KN Acta Crystallogr D Biol Crystallogr. 2008 May;64(Pt 5):543-50. Epub 2008, Apr 19. PMID:18453690[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. St-Jean M, Izard T, Sygusch J. A hydrophobic pocket in the active site of glycolytic aldolase mediates interactions with Wiskott-Aldrich syndrome protein. J Biol Chem. 2007 May 11;282(19):14309-15. Epub 2007 Feb 27. PMID:17329259 doi:10.1074/jbc.M611505200
  2. Sherawat M, Tolan DR, Allen KN. Structure of a rabbit muscle fructose-1,6-bisphosphate aldolase A dimer variant. Acta Crystallogr D Biol Crystallogr. 2008 May;64(Pt 5):543-50. Epub 2008, Apr 19. PMID:18453690 doi:10.1107/S0907444908004976

3bv4, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA