1510-N membrane protease K138A mutant specific for a stomatin homolog from Pyrococcus horikoshii1510-N membrane protease K138A mutant specific for a stomatin homolog from Pyrococcus horikoshii

Structural highlights

3bpp is a 1 chain structure with sequence from Pyrococcus horikoshii. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

STOPP_PYRHO Protease that cleaves its substrates preferentially near hydrophobic or aromatic amino acid residues. Can degrade casein and the stomatin homolog PH1511 (in vitro).[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Membrane-bound proteases are involved in various regulatory functions. A previous report indicates that the N-terminal region of PH1510 (1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii is a serine protease with a catalytic Ser-Lys dyad (Ser97 and Lys138), and specifically cleaves the C-terminal hydrophobic region of the p-stomatin PH1511. According to the crystal structure of the wild-type 1510-N in dimeric form, the active site around Ser97 is in a hydrophobic environment suitable for the hydrophobic substrates. This article reports the crystal structure of the K138A mutant of 1510-N at 2.3 A resolution. The determined structure contains one molecule per asymmetric unit, but 1510-N is active in dimeric form. Two possible sets of dimer were found from the symmetry-related molecules. One dimer is almost the same as the wild-type 1510-N. Another dimer is probably in an inactive form. The L2 loop, which is disordered in the wild-type structure, is significantly kinked at around A-138 in the K138A mutant. Thus Lys138 probably has an important role on the conformation of L2.

Novel dimer structure of a membrane-bound protease with a catalytic Ser-Lys dyad and its linkage to stomatin.,Yokoyama H, Hamamatsu S, Fujii S, Matsui I J Synchrotron Radiat. 2008 May;15(Pt 3):254-7. Epub 2008 Apr 18. PMID:18421152[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Yokoyama H, Matsui I. A novel thermostable membrane protease forming an operon with a stomatin homolog from the hyperthermophilic archaebacterium Pyrococcus horikoshii. J Biol Chem. 2005 Feb 25;280(8):6588-94. Epub 2004 Dec 16. PMID:15611110 doi:10.1074/jbc.M411748200
  2. Yokoyama H, Matsui E, Akiba T, Harata K, Matsui I. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii. J Mol Biol. 2006 May 12;358(4):1152-64. Epub 2006 Mar 9. PMID:16574150 doi:10.1016/j.jmb.2006.02.052
  3. Yokoyama H, Kobayashi D, Takizawa N, Fujii S, Matsui I. Structural and biochemical analysis of a thermostable membrane-bound stomatin-specific protease. J Synchrotron Radiat. 2013 Nov;20(Pt 6):933-7. doi: 10.1107/S0909049513021328., Epub 2013 Sep 25. PMID:24121343 doi:http://dx.doi.org/10.1107/S0909049513021328
  4. Yokoyama H, Hamamatsu S, Fujii S, Matsui I. Novel dimer structure of a membrane-bound protease with a catalytic Ser-Lys dyad and its linkage to stomatin. J Synchrotron Radiat. 2008 May;15(Pt 3):254-7. Epub 2008 Apr 18. PMID:18421152 doi:10.1107/S0909049507068471

3bpp, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA