X-ray crystal structure of the SARS coronavirus spike receptor binding domain in complex with F26G19 FabX-ray crystal structure of the SARS coronavirus spike receptor binding domain in complex with F26G19 Fab

Structural highlights

3bgf is a 6 chain structure with sequence from Mus musculus and Severe acute respiratory syndrome-related coronavirus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SPIKE_SARS May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.[1] Attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 and CLEC4M/DC-SIGNR receptors and internalization of the virus into the endosomes of the host cell induces conformational changes in the S glycoprotein. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membrane fusion within endosomes.[HAMAP-Rule:MF_04099][2] [3] Mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099][4]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.

Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain.,Pak JE, Sharon C, Satkunarajah M, Auperin TC, Cameron CM, Kelvin DJ, Seetharaman J, Cochrane A, Plummer FA, Berry JD, Rini JM J Mol Biol. 2009 May 15;388(4):815-23. Epub 2009 Mar 24. PMID:19324051[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wang SM, Huang KJ, Wang CT. Severe acute respiratory syndrome coronavirus spike protein counteracts BST2-mediated restriction of virus-like particle release. J Med Virol. 2019 Oct;91(10):1743-1750. doi: 10.1002/jmv.25518. Epub 2019 Jul 10. PMID:31199522 doi:http://dx.doi.org/10.1002/jmv.25518
  2. Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004 Jan 30;279(5):3197-201. Epub 2003 Dec 11. PMID:14670965 doi:http://dx.doi.org/10.1074/jbc.C300520200
  3. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD Jr, Thackray LB, Young MD, Mason RJ, Ambrosino DM, Wentworth DE, Demartini JC, Holmes KV. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53. doi:, 10.1073/pnas.0403812101. Epub 2004 Oct 20. PMID:15496474 doi:http://dx.doi.org/10.1073/pnas.0403812101
  4. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6. doi:, 10.1073/pnas.0809524106. Epub 2009 Mar 24. PMID:19321428 doi:http://dx.doi.org/10.1073/pnas.0809524106
  5. Pak JE, Sharon C, Satkunarajah M, Auperin TC, Cameron CM, Kelvin DJ, Seetharaman J, Cochrane A, Plummer FA, Berry JD, Rini JM. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. J Mol Biol. 2009 May 15;388(4):815-23. Epub 2009 Mar 24. PMID:19324051 doi:10.1016/j.jmb.2009.03.042

3bgf, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA