The quorum quenching N-acyl homoserine lactone acylase PvdQ in complex with 3-oxo-lauric acidThe quorum quenching N-acyl homoserine lactone acylase PvdQ in complex with 3-oxo-lauric acid

Structural highlights

2wyc is a 2 chain structure with sequence from Pseae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Activity:Acyl-homoserine-lactone acylase, with EC number 3.5.1.97
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PVDQ_PSEAE] Catalyzes the deacylation of acyl-homoserine lactone (AHL or acyl-HSL), releasing homoserine lactone (HSL) and the corresponding fatty acid. Possesses a specificity for the degradation of long-chain acyl-HSLs (side chains of 11 to 14 carbons in length). Degrades 3-oxo-C12-HSL, one of the two main AHL signal molecules of P.aeruginosa, and thereby functions as a quorum quencher, inhibiting the las quorum-sensing system. Therefore, may enable P.aeruginosa to modulate its own quorum-sensing-dependent pathogenic potential. Also appears to be required for pyoverdin biosynthesis.[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In many Gram-negative pathogens, their virulent behavior is regulated by quorum sensing, in which diffusible signals such as N-acyl homoserine lactones (AHLs) act as chemical messaging compounds. Enzymatic degradation of these diffusible signals by, e.g., lactonases or amidohydrolases abolishes AHL regulated virulence, a process known as quorum quenching. Here we report the first crystal structure of an AHL amidohydrolase, the AHL acylase PvdQ from Pseudomonas aeruginosa. PvdQ has a typical alpha/beta heterodimeric Ntn-hydrolase fold, similar to penicillin G acylase and cephalosporin acylase. However, it has a distinct, unusually large, hydrophobic binding pocket, ideally suited to recognize C12 fatty acid-like chains of AHLs. Binding of a C12 fatty acid or a 3-oxo-C12 fatty acid induces subtle conformational changes to accommodate the aliphatic chain. Furthermore, the structure of a covalent ester intermediate identifies Serbeta1 as the nucleophile and Asnbeta269 and Valbeta70 as the oxyanion hole residues in the AHL degradation process. Our structures show the versatility of the Ntn-hydrolase scaffold and can serve as a structural paradigm for Ntn-hydrolases with similar substrate preference. Finally, the quorum-quenching capabilities of PvdQ may be utilized to suppress the quorum-sensing machinery of pathogens.

The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket.,Bokhove M, Jimenez PN, Quax WJ, Dijkstra BW Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):686-91. Epub 2009 Dec 22. PMID:20080736[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun. 2006 Mar;74(3):1673-82. PMID:16495538 doi:74/3/1673
  2. Huang JJ, Han JI, Zhang LH, Leadbetter JR. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2003 Oct;69(10):5941-9. PMID:14532048
  3. Lamont IL, Martin LW. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology. 2003 Apr;149(Pt 4):833-42. PMID:12686626
  4. Bokhove M, Jimenez PN, Quax WJ, Dijkstra BW. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):686-91. Epub 2009 Dec 22. PMID:20080736

2wyc, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA