Human carbonic anhydrase II in complex with bicarbonateHuman carbonic anhydrase II in complex with bicarbonate

Structural highlights

2vvb is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.66Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]

Function

CAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Carbonic anhydrase, a zinc metalloenzyme, catalyzes the reversible hydration of carbon dioxide to bicarbonate. It is involved in processes connected with acid-base homeostasis, respiration, and photosynthesis. More than 100 distinct human carbonic anhydrase II (HCAII) 3D structures have been generated in last 3 decades [Liljas A, et al. (1972) Nat New Biol 235:131-137], but a structure of an HCAII in complex with CO(2) or HCO(3)(-) has remained elusive. Here, we report previously undescribed structures of HCAII:CO(2) and HCAII:HCO(3)(-) complexes, together with a 3D molecular film of the enzymatic reaction observed successively in the same crystal after extended exposure to X-ray. We demonstrate that the unexpected enzyme activation was caused in an X-ray dose-dependent manner. Although X-ray damage to macromolecular samples has long been recognized [Ravelli RB, Garman EF (2006) Curr Opin Struct Biol 16:624-629], the detailed structural analysis reports on X-ray-driven reactions have been very rare in literature to date. Here, we report on enzyme activation and the associated chemical reaction in a crystal at 100 K. We propose mechanisms based on water photoradiolysis and/or electron radiolysis as the main cause of enzyme activation.

Structural study of X-ray induced activation of carbonic anhydrase.,Sjoblom B, Polentarutti M, Djinovic-Carugo K Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10609-13. Epub 2009 Jun 11. PMID:19520834[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
  2. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
  3. Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
  4. Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
  5. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
  6. Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
  7. Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
  8. Sjoblom B, Polentarutti M, Djinovic-Carugo K. Structural study of X-ray induced activation of carbonic anhydrase. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10609-13. Epub 2009 Jun 11. PMID:19520834

2vvb, resolution 1.66Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA